Peter Smith's Blog, page 110
January 11, 2014
Gödel book related …
I’ve just updated the corrections page for IGT2 (thanks to Richard Baron for spotting a few more, fortunately minor, errors).
I have also updated the page on what to read before/after/instead of IGT2.
I have further updated the notes Gödel Without Tears (the first three episodes have now been revised).
In updating those notes I’ve removed a few unnecessarily fancy asides — the material appears in a different guise in the newest set of exercises for the book (which will you will find here). Indeed my plan as I work through updating the GWT notes is, at the same time, to add exercises on the topics of revised episodes as I go along.
January 8, 2014
The Higgins

The Early Ploughman, Samuel Palmer
We hadn’t been to The Higgins since the now united galleries and museum in Bedford re-opened last year after a really major refurbishment. The building is beautifully renovated (or mostly so — the café is not particularly attractively laid out), and the museum displays look terrific. In particular, there is currently a very enjoyable small exhibition A National Art: Watercolour & the British Landscape Tradition. This is drawn entirely from the gallery’s own collection, and includes works by Samuel Palmer (including the etching above), Turner, and Cotman, alongside twentieth-century watercolours. Some very fine pieces. All very well worth a visit, and indeed a re-visit.
January 6, 2014
Introducing Homotopy Type Theory
Yes, Homotopy Type Theory is the latest, greatest, thing (we are told). Yes, a free book is available, following on from a major year-long program at the Institute for Advanced Study at Princeton in 2013-13, and this will tell you lots about the current state of play. And yes, you too started the book and found it pretty impenetrable. What on earth is going on?
Help is at hand.
Robert Harper at CMU ran a grad course last semester, ‘Introducing Homotopy Type Theory’. Notes written up by his students are online. So too are videos of his lectures (use the “stay on the web” option if visiting the site on an iPad). This all looks a pretty good way in if you are still curious about the HoTT phenomenon.
Introducing Homotopy Type Theory.
Yes, Homotopy Type Theory is the latest, greatest, thing (we are told). Yes, a free book is available, following on from a major year-long program at the Institute for Advanced Study at Princeton in 2013-13, and this will tell you lots about the current state of play. And yes, you too started the book and found it pretty impenetrable. What on earth is going on?
Help is at hand.
Robert Harper at CMU ran a grad course last semester, ‘Introducing Homotopy Type Theory’. Notes written up by his students are online. So too are videos of his lectures (use the “stay on the web” option if visiting the site on an iPad). This all looks a pretty good way in if you are still curious about the HoTT phenomenon.
January 5, 2014
Gödel Without (Too Many) Tears, 2014 version
I’ve made a start updating the notes Gödel Without Tears.
The previous version of the notes was downloaded nearly three thousand times in the last twelve months: so it certainly seems worth putting in the effort to produce a better version, and to get the notes to integrate better with the new edition of my Gödel book.
Some months ago, I rashly said I might try to run some kind of informal online course based on GWT. But unexpected pressures on my time have made that impossible. I’ll only be able to continue updating the notes at irregular intervals. However, you can leave comments on the GWT page to report typos or unclarities. And if you (or your students) post more substantive queries in a sensible form on math.stackexchange then almost certainly someone (quite possibly me!) will answer them.
December 28, 2013
Edmund de Waal at the Fitz

Image linked from Apollo Magazine’s article ‘Fragile Histories’ by Jon Sanders
There’s a wonderful small exhibition ‘On White: Porcelain Stories from the Fitzwilliam Museum’ by Edmund de Waal at the Fitz until Sunday 23 February 2014. There are three works by de Waal himself, and a series of cases in which he chooses some favourite pieces of porcelain, and comments illuminatingly on their significance and strangeness. A delight if you are in Cambridge and want to escape the madness of the town centre in the sales.
December 21, 2013
A Christmas card

Gentile Da Fabriano (c. 1370 – 1427), Navity, Uffizi
All good wishes for a happy and peaceful Christmas
December 15, 2013
Intro to Formal Logic: seventh time lucky?
My Introduction to Formal Logic was published in 2003, and CUP’s initial print run was rather large, so I didn’t get the chance to correct the inevitable typos and thinkos until a reprint in 2009. By that time, needless to say, there were quite a few little presentational things I wanted to change, so I slipped in a load of minor rewritings too. This revised version has been reprinted a number of times. (Oh yes, but of course, I’m making an absolute fortune …)
Along the way, Joseph Jedwab kindly sent me an embarrassingly long list of further errors in the revised printings (I have to put my hand up to having introduced quite a number of these in making the “improvements” in the second printing: thankfully, they were nearly all minor typos). Eventually I had the opportunity to make the needed further corrections, and I’ve just picked up the seventh printing from CUP bookshop. I hope this latest version is a heck of a lot cleaner than the previous ones. Fingers crossed.
A revised printing is not a new edition with a new ISBN, so I’m afraid you can’t put in a bookshop request for the seventh printing and be guaranteed to get one. But eventually the new version will propagate through the distribution system, and jolly good it is too. Or at any rate, reading through while making corrections and looking for any that Joseph Jedwab had missed (none, as far as I could find), I found I didn’t actually hate the book. Distance lends enchantment, eh?
December 12, 2013
TYL, #19: the Teach Yourself Guide reorganized and updated
Sooner than I was planning, there’s now yet another update for the Teach Yourself Logic Guide. So here is Version 9.4 of the Guide (pp. iii + 72).
The main change — though it is a significant one, which is why it is worth propagating this new version ahead of schedule — is that the Guide has been reorganized to make it easier to navigate, and hopefully less daunting. Topics on the standard “mathematical logic” curriculum (of interest of mathematicians and philosophers alike) are now separated more sharply from topics likely to be more specialized interest to some philosophers. I’ve also added comments on books by Devlin, Hodel, Johnstone, and Sider.
As I’ve said before, do spread the word to anyone you think might have use for the Guide. As always, there’s a stable URL for the page which links to the latest version, http://logicmatters.net/students/tyl/. You can reliably use that link in reading lists, or on your website’s resources page for graduate students, etc.
November 29, 2013
On Sider’s Logic for Philosophy — 2
Suppose that you have some background in classical first-order logic, and want to learn something about modal logic (including quantified modal logic) and, relatedly, about Kripke semantics for intuitionistic logic. Then the second half of Sider’s Logic for Philosophy certainly aims to cover the ground, and it will tell you about formal theories of counterfactuals too. How well does it succeed, especially if you skip the first half of the book and dive straight in, starting with Ch. 6?
These later chapters in fact seem to me to work fairly well (assuming a logic-competent reader). Compared with the early chapters with their inconsistent levels of coverage and sophistication, the discussion here develops more systematically and at a reasonably steady level of exposition. There is a lot of (acknowledged) straight borrowing from Hughes and Cresswell, and student readers would probably do best by supplementing Sider with a parallel reading of that approachable classic text. But if you want a pretty clear explanation of Kripke semantics together with an axiomatic presentation of some standard modal propositional systems, and want to learn e.g. how to search systematically for countermodels, Sider’s treatment could well work as a basis. And then the later treatments of quantified modal logic (and some of the conceptual issues they raise) are also lucid and tolerably approachable.
This is a game of two halves then. Before the interval, Logic for Philosophy is pretty scrappy and I wouldn’t recommend it. After the interval, when Sider plays through some standard modal logics, things look up. I wouldn’t have him at the top of the league for modality-for-philosophers (see the current version of the Guide for preferred recommendations); but Sider’s book-within-a-book turns in a respectable performance.