Metin Bektas's Blog: Metin's Media and Math - Posts Tagged "non-fiction"
Intensity (or: How Much Power Will Burst Your Eardrums?)
Under ideal circumstances, sound or light waves emitted from a point source propagate in a spherical fashion from the source. As the distance to the source grows, the energy of the waves is spread over a larger area and thus the perceived intensity decreases. We'll take a look at the formula that allows us to compute the intensity at any distance from a source.
First of all, what do we mean by intensity? The intensity I tells us how much energy we receive from the source per second and per square meter. Accordingly, it is measured in the unit J per s and m² or simply W/m². To calculate it properly we need the power of the source P (in W) and the distance r (in m) to it.
I = P / (4 · π · r²)
This is one of these formulas that can quickly get you hooked on physics. It's simple and extremely useful. In a later section you will meet the denominator again. It is the expression for the surface area of a sphere with radius r.
Before we go to the examples, let's take a look at a special intensity scale that is often used in acoustics. Instead of expressing the sound intensity in the common physical unit W/m², we convert it to its decibel value dB using this formula:
dB ≈ 120 + 4.34 · ln(I)
with ln being the natural logarithm. For example, a sound intensity of I = 0.00001 W/m² (busy traffic) translates into 70 dB. This conversion is done to avoid dealing with very small or large numbers. Here are some typical values to keep in mind:
0 dB → Threshold of Hearing
20 dB → Whispering
60 dB → Normal Conversation
80 dB → Vacuum Cleaner
110 dB → Front Row at Rock Concert
130 dB → Threshold of Pain
160 dB → Bursting Eardrums
No onto the examples.
----------------------
We just bought a P = 300 W speaker and want to try it out at maximal power. To get the full dose, we sit at a distance of only r = 1 m. Is that a bad idea? To find out, let's calculate the intensity at this distance and the matching decibel value.
I = 300 W / (4 · π · (1 m)²) ≈ 23.9 W/m²
dB ≈ 120 + 4.34 · ln(23.9) ≈ 134 dB
This is already past the threshold of pain, so yes, it is a bad idea. But on the bright side, there's no danger of the eardrums bursting. So it shouldn't be dangerous to your health as long as you're not exposed to this intensity for a longer period of time.
As a side note: the speaker is of course no point source, so all these values are just estimates founded on the idea that as long as you're not too close to a source, it can be regarded as a point source in good approximation. The more the source resembles a point source and the farther you're from it, the better the estimates computed using the formula will be.
----------------------
Let's reverse the situation from the previous example. Again we assume a distance of r = 1 m from the speaker. At what power P would our eardrums burst? Have a guess before reading on.
As we can see from the table, this happens at 160 dB. To be able to use the intensity formula, we need to know the corresponding intensity in the common physical quantity W/m². We can find that out using this equation:
160 ≈ 120 + 4.34 · ln(I)
We'll subtract 120 from both sides and divide by 4.34:
40 ≈ 4.34 · ln(I)
9.22 ≈ ln(I)
The inverse of the natural logarithm ln is Euler's number e. In other words: e to the power of ln(I) is just I. So in order to get rid of the natural logarithm in this equation, we'll just use Euler's number as the basis on both sides:
e^9.22 ≈ e^ln(I)
10,100 ≈ I
Thus, 160 dB correspond to I = 10,100 W/m². At this intensity eardrums will burst. Now we can answer the question of which amount of power P will do that, given that we are only r = 1 m from the sound source. We insert the values into the intensity formula and solve for P:
10,100 = P / (4 · π · 1²)
10,100 = 0.08 · P
P ≈ 126,000 W
So don't worry about ever bursting your eardrums with a speaker or a set of speakers. Not even the powerful sound systems at rock concerts could accomplish this.
----------------------
This was an excerpt from the ebook "Great Formulas Explained - Physics, Mathematics, Economics", released yesterday and available here: http://www.amazon.com/dp/B00G807Y00.
First of all, what do we mean by intensity? The intensity I tells us how much energy we receive from the source per second and per square meter. Accordingly, it is measured in the unit J per s and m² or simply W/m². To calculate it properly we need the power of the source P (in W) and the distance r (in m) to it.
I = P / (4 · π · r²)
This is one of these formulas that can quickly get you hooked on physics. It's simple and extremely useful. In a later section you will meet the denominator again. It is the expression for the surface area of a sphere with radius r.
Before we go to the examples, let's take a look at a special intensity scale that is often used in acoustics. Instead of expressing the sound intensity in the common physical unit W/m², we convert it to its decibel value dB using this formula:
dB ≈ 120 + 4.34 · ln(I)
with ln being the natural logarithm. For example, a sound intensity of I = 0.00001 W/m² (busy traffic) translates into 70 dB. This conversion is done to avoid dealing with very small or large numbers. Here are some typical values to keep in mind:
0 dB → Threshold of Hearing
20 dB → Whispering
60 dB → Normal Conversation
80 dB → Vacuum Cleaner
110 dB → Front Row at Rock Concert
130 dB → Threshold of Pain
160 dB → Bursting Eardrums
No onto the examples.
----------------------
We just bought a P = 300 W speaker and want to try it out at maximal power. To get the full dose, we sit at a distance of only r = 1 m. Is that a bad idea? To find out, let's calculate the intensity at this distance and the matching decibel value.
I = 300 W / (4 · π · (1 m)²) ≈ 23.9 W/m²
dB ≈ 120 + 4.34 · ln(23.9) ≈ 134 dB
This is already past the threshold of pain, so yes, it is a bad idea. But on the bright side, there's no danger of the eardrums bursting. So it shouldn't be dangerous to your health as long as you're not exposed to this intensity for a longer period of time.
As a side note: the speaker is of course no point source, so all these values are just estimates founded on the idea that as long as you're not too close to a source, it can be regarded as a point source in good approximation. The more the source resembles a point source and the farther you're from it, the better the estimates computed using the formula will be.
----------------------
Let's reverse the situation from the previous example. Again we assume a distance of r = 1 m from the speaker. At what power P would our eardrums burst? Have a guess before reading on.
As we can see from the table, this happens at 160 dB. To be able to use the intensity formula, we need to know the corresponding intensity in the common physical quantity W/m². We can find that out using this equation:
160 ≈ 120 + 4.34 · ln(I)
We'll subtract 120 from both sides and divide by 4.34:
40 ≈ 4.34 · ln(I)
9.22 ≈ ln(I)
The inverse of the natural logarithm ln is Euler's number e. In other words: e to the power of ln(I) is just I. So in order to get rid of the natural logarithm in this equation, we'll just use Euler's number as the basis on both sides:
e^9.22 ≈ e^ln(I)
10,100 ≈ I
Thus, 160 dB correspond to I = 10,100 W/m². At this intensity eardrums will burst. Now we can answer the question of which amount of power P will do that, given that we are only r = 1 m from the sound source. We insert the values into the intensity formula and solve for P:
10,100 = P / (4 · π · 1²)
10,100 = 0.08 · P
P ≈ 126,000 W
So don't worry about ever bursting your eardrums with a speaker or a set of speakers. Not even the powerful sound systems at rock concerts could accomplish this.
----------------------
This was an excerpt from the ebook "Great Formulas Explained - Physics, Mathematics, Economics", released yesterday and available here: http://www.amazon.com/dp/B00G807Y00.
Earth’s Magnetic Field
You have been in a magnetic field all your life. The Earth, just like any other planet in the solar system, spawns its own magnetic field. The strength of the field is around B =0.000031 T, but research has shown that this value is far from constant. Earth’s magnetic field is constantly changing. How do we know this? When rocks solidify, they store the strength and direction of the magnetic field. Hence, as long it is possible to figure out the orientation of a rock at the time of solidification, it will tell us what the field was like back then
For rocks that are billions of years old, deducing the original orientation is impossible. Continental drifting has displaced and turned them too often. But thanks to the incredibly low speed of drifting continents, scientists were able to recreate the magnetic field of Earth for the past several million years. This revealed quite a bit.
For one, the poles don’t stand still, but rather wander across the surface with around 50 km per year. The strength of the field varies from practically zero to 0.0001 T (about three times the current strength). And even more astonishingly: the polarity of the field flips every 300,000 years or so. The north pole then turns into the south pole and vice versa. The process of pole reversal takes on average between 1000 and 5000 years, but can also happen within just 100 years. There is no indication that any of these changes had a noticeable impact on plants or animals.
Where does the magnetic field come from? At present there’s no absolute certainty, but the Parker Dynamo Model developed in the sixties seems to be provide the correct answer. The inner core of Earth is a sphere of solid iron that is roughly equal to the Moon in size and about as hot as the surface of the Sun. Surrounding it is the fluid outer core. The strong temperature gradient within the outer core leads to convective currents that contain large amounts of charged particles. According to the theory, the motion of these charges is what spawns the field. Recent numerical simulations on supercomputers have shown that this model is indeed able to reproduce the field in most aspects. It explains the intensity, the dipole structure, the wandering of the poles (including the observed drifting speed) and the pole reversals (including the observed time spans).
It is worth noting that the pole which lies in the geographic north, called the North Magnetic Pole, is actually a magnetic south pole. You might recall that we defined the north pole of a magnet as the pole which will point northwards when the magnet is allowed to turn freely. Since unlike poles attract, this means that there must be a magnetic south pole in the north (talk about confusing). By the same logic we can conclude that the Earth’s South Magnetic Pole is a magnetic north pole.
More interesting physics for non-physicists can be found here:
Physics! In Quantities and Examples
For rocks that are billions of years old, deducing the original orientation is impossible. Continental drifting has displaced and turned them too often. But thanks to the incredibly low speed of drifting continents, scientists were able to recreate the magnetic field of Earth for the past several million years. This revealed quite a bit.
For one, the poles don’t stand still, but rather wander across the surface with around 50 km per year. The strength of the field varies from practically zero to 0.0001 T (about three times the current strength). And even more astonishingly: the polarity of the field flips every 300,000 years or so. The north pole then turns into the south pole and vice versa. The process of pole reversal takes on average between 1000 and 5000 years, but can also happen within just 100 years. There is no indication that any of these changes had a noticeable impact on plants or animals.
Where does the magnetic field come from? At present there’s no absolute certainty, but the Parker Dynamo Model developed in the sixties seems to be provide the correct answer. The inner core of Earth is a sphere of solid iron that is roughly equal to the Moon in size and about as hot as the surface of the Sun. Surrounding it is the fluid outer core. The strong temperature gradient within the outer core leads to convective currents that contain large amounts of charged particles. According to the theory, the motion of these charges is what spawns the field. Recent numerical simulations on supercomputers have shown that this model is indeed able to reproduce the field in most aspects. It explains the intensity, the dipole structure, the wandering of the poles (including the observed drifting speed) and the pole reversals (including the observed time spans).
It is worth noting that the pole which lies in the geographic north, called the North Magnetic Pole, is actually a magnetic south pole. You might recall that we defined the north pole of a magnet as the pole which will point northwards when the magnet is allowed to turn freely. Since unlike poles attract, this means that there must be a magnetic south pole in the north (talk about confusing). By the same logic we can conclude that the Earth’s South Magnetic Pole is a magnetic north pole.
More interesting physics for non-physicists can be found here:
Physics! In Quantities and Examples


