Mike Elliott's Blog, page 9

April 29, 2019

How to Repair a Rib-and-Batten Canoe — Part 2

by Sam Browning

edited by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


Note: In 2016, I put out a call for someone with a wide-board raised-batten canoe to bring it to my shop in British Columbia, Canada for me to restore and document as part of my second book ̶  “This Fancy Old Canoe”.


[image error]


I was contacted immediately by Sam Browning. He was about to start restoring one of these canoes.  He offered to take pictures of the project as he worked.  I offered to come to his shop to see the canoe and meet him in person until he let me know he lived in Ely, Cambridgeshire, England.


A few months later, I received a USB flash drive in the mail from Sam. It contained 300 images and a copy of the posts he presented on the ‘Song of the Paddle’ web forum as he documented the restoration.  For my blog (and eventually my book), I have edited Sam’s posts and added a few notes of my own (presented in italics).  For this article, I am presenting the wide-board repairs.


Many thanks to Sam for his excellent work and generous contribution to my book.


*****************


[image error]


My plank repairs consist of three boards that need to be replaced. There is a small piece missing from the bilge-plank at the stern.  It starts at the last rib and runs to the internal stem.  The second is a bilge-plank on the port side spanning across six ribs and the third is a long bilge-plank on the starboard side spanning across 17 ribs.  My plan is to do the repairs in order from smallest to largest in order to learn on the small repairs and hone the process for the Big One.


[image error]


Copper canoe nails (16-gauge 1″ or 25 mm long) are harder to get out than tacks on a cedar-canvas canoe as they are driven through a basswood (or Spanish cedar) plank as well as rock elm ribs before being bent over (dubbed) and clinched. The nails aren’t tapered either (apart from the point) and they hold well despite their age.


[image error]


Getting rid of the heads and punching them through to the inside works best. I use an angle grinder set up with a 24-grit sanding disk to grind off the heads of the copper nails. Care must be taken to ensure that only the board to be removed is touched by the grinder.


[image error]


For the first repair, I tidy up where the new piece of plank has to start, removing nails and chamfering the edge so that the new nails will go through both the new and existing wood.


[image error]


The new plank is a piece of basswood cut carefully to its final dimensions and planed to match the thickness of the original boards (¼” or 6 mm). The end of the new plank butts up again the existing board and laps over it with a chamfered edge to match the chamfer on the existing board.


[image error]


When I am happy with the fit, I drill pilot holes for the canoe nails at the join and push them through from the outside.


[image error]


Next, whilst pushing them firmly from the outside, I bend (dub) the nails over with a clinching iron.


[image error]


I wet the outside of the new plank with hot water so the nails  sink into the wood without doing any damage.


[image error]


Then, while holding a clinching iron on the bent nail inside, I hammer the outside until the nail is flush with the surface.


[image error]


I repeat this along the top and bottom edge as well as two rows of nails in the stem. The end of the new plank extending past the stem is trimmed to complete the job.


I now turn my attention to the second plank repair. Because of what I’ve done already, I’m confident about the nailing procedure.  For this repair, I have to learn to fit a plank that bends in two directions.  In the factory, the planks would have been cut from patterns which (sadly) are not available to me.  When the flat shape had been cut, the outside of the plank was soaked with boiling water poured over it.  This swells the grain causing it to cup until the correct curve was reached.  Then, it was nailed into place.  My plan for the repair is to cut the plank oversize, hold it in place with a strap at each rib, then pour boiling water over it to cause it to curve.  As it bends, I should be able to tighten the straps and hold it in place until it dries.  I will then mark out the dimensions of the gap and work from there.


[image error]


The first step is to fit basswood strips onto the outside surface of the exposed ribs. These spacers create a flush surface upon which to bent the oversized plank.  To make spacers, I cut strips and poured boiling water over them.  They bend into a suitable curve with very little pressure.  I then tape the spacers into place.


[image error]


I chamfer the edges of the old plank so the chamfer on the new plank fits precisely and allows a line of nails to go through both.


[image error]


To spread the tension from the straps evenly along the new plank, I put battens along the both the top and bottom edges.


[image error]


I use steam from a wallpaper stripper rather than pouring boiling water to help the plank curve into shape.


[image error]


Two people would have made things easier, but after holding the steamer in place for a minute or so, then moving it along the plank and holding it with my knee, I am able to pull the straps progressively tighter. I work my way up and down the plank until it is tight against the hull along its full length.  At both ends, I use ratchet straps and a couple of wedges to hold the curve tight to the hull.  I allow the plank to dry for a couple of days.


[image error]


Before I remove the straps, I clamp some blocks under the plank and at the ends. These act as reference points so I can put the plank back in exactly the same place while I mark, trim and fit the top edge.


[image error]


A planking gauge is used to mark the position of the gap’s edge even though the plank covers it and I can’t see.


[image error]


The ‘L’ part of the gauge slides behind the plank and is moved along the edge of the gap while a pencil sits in the notch and draws a line.


[image error]


Once the plank is marked, I use an apron plane to bring the plank dimension down to just outside the line. Then, a series of testing fitting, shaping, fitting, shaping until I have it just right.  Then, the inside edges at the ends were chamfered to match the existing planks.  The whole process takes about two hours before I am happy with it.  I run a line of masking tape above and below the gap.  On the tape, I mark where the ribs are so I can drill from the outside and place straps and blocks just to the sides of the ribs. This way, I can get the nails in, dubbed and clinched without worrying about the straps being in the way.


[image error]


I nail the ribs, five in each, with a double row on the ends, then along the top and bottom edges into the battens – about 90 nails in all, drilled, pushed through, dubbed and clinched.


[image error]


With the process honed, I turn to the Big One. I begin by making 16 basswood spacers for the ribs.


[image error]


I steam and tape the spacers to the ribs.


[image error]


I make two 12′ (3.7 meter) battens, arrange 16 straps and two ratchet straps. I make an oversized piece of basswood to fit over the gap.  I steam the plank and tighten the straps, then steam and tighten again.


[image error]


I check to make sure it is all tight with no gaps showing, then leave it for a couple of days.


[image error]


The marking, cutting, fitting, shaping routine is the same as for the second plank.


[image error]


The final fitting and nailing proceeds smoothly.


[image error]


It’s great how once you have done a job, you wonder what all the fuss was about. I suppose, at any time, I could have pulled a strap too tight and split a plank.  I could have planed too much off and left a gap.  A plank could have split while I was nailing.  If you need a plank for your board and batten canoe just let me know, I have a spare plank waiting in reserve.


[image error]


The entire restoration process (including plank replacement) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on April 29, 2019 12:52

How to Repair a Rib-and-Batten Canoe — Part 1

by Sam Browning

edited by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


Note: In 2016, I put out a call for someone with a wide-board raised-batten canoe to bring it to my shop in British Columbia, Canada for me to restore and document as part of my second book  ̶  “This Fancy Old Canoe”.



[image error]


(photo by Nick Dennis)



I was contacted immediately by Sam Browning. He was about to start restoring one of these canoes.  He offered to take pictures of the project as he worked.  I offered to come to his shop to see the canoe and meet him in person until he let me know he lived in Ely, Cambridgeshire, England.


A few months later, I received a USB flash drive in the mail from Sam. It contained 300 images and a copy of the posts he presented on the ‘Song of the Paddle’ web forum as he documented the restoration.  For my blog (and eventually my book), I have edited Sam’s posts and added a few notes of my own (presented in italics).  For this article, I am presenting the rib repairs as well as some general history and description of the canoe.


Many thanks to Sam for his excellent work and generous contribution to my book.


*****************



[image error]


(Canadian Canoe Company catalogue, 1929)



My canoe was made by the Canadian Canoe Company in Peterborough, Ontario. The company started in 1892.  The last canoes of this type were built around the mid 1930’s.  From the 1929 catalogue, my canoe is the 15′ 6″ No. 4 all wood canoe F quality (varnished, basswood boards).  It has a 29½” (75 cm) beam and a depth of 11½” (29 cm) amidships.  It is interesting to note that the garboards (the two planks on the bottom of the canoe) in my canoe are Spanish cedar  ̶  a true mahogany.



[image error]


(photo by Sam Browning)



This particular canoe was imported to England by Salter Bros. Ltd. of Oxford. Looking at the Salter Bros. history, they mention importing 21 canoes from Canada in 1930.  My canoe may be one of those.



[image error]


(illustration by Sam Browning)



The exact origin of wide-board raised-batten canoe construction on a solid wood form is up for debate, but it was probably developed in a combined effort by Tom Gordon and John Stephenson in 1857. Construction began by laying down a white oak keelson.  Rock elm ribs were then bent over the form and fitted into notches cut into the keelson.  Wide basswood boards (three or four on each side) ran longitudinally and were attached to the ribs with copper canoe nails.  Nail holes were pre-drilled and the nails were driven straight into the solid-wood form.  The hull was then pulled free of the form and turned right-side up. 



[image error]


(photo by Sam Browning)



The nails were then ‘dubbed’ (bent over) to lie flat along the ribs (with the points towards the keelson) and then clinched tight with a clinching iron and cobblers hammer. The seams between the basswood boards were covered with ironwood battens between the ribs held in place with copper canoe nails.


If this was a cedar-canvas canoe with damaged ribs, I’d just take them out and replace them. With one of these canoes, you can’t do that without taking the whole thing apart.  What I plan to do is bend new rib material which will extend from the keelson to the sheer-line and nail it in place alongside the existing rib (this process is commonly used in wooden boat repair and is known as sistering ribs).



[image error]


(photo by Sam Browning)



Because the canoe has had broken ribs for many years, it needs a bit of reshaping before I can bend and install the new rib material. Straps around the canoe with a couple of lengths of timber to push in the right places helps to reshape.



[image error]


(photo by Sam Browning)



I bend the new rib material inside (straight-grained english oak cut to size and shaped to replicate the original before it is soaked overnight and steamed for an hour), on top of the old rib.  Any spring-back should result in the right size and curve.  The end of the new rib at the keelson is held in place by a scrap piece of hardwood wedged between it and a length of timber positioned above the keelson and clamped on top of the thwarts.  The rest of the new rib is held in place with g-clamps (c-clamps) and spring clamps. This process is facilitated by the fact that one of the basswood planks is missing.  The missing plank allows me to use a couple of spring clamps to hold it in the middle.



[image error]


(photo by Sam Browning)



Once the new rib has dried overnight, I decided to cut the battens first as it has to be easier than removing them and installing new ones. With over ten copper nails dubbed and clinched in each batten, it would be impossible to remove them in one piece, and they do have to fit exactly.  I cut the battens with an inlay saw (3″ or 76 mm blade with 20 teeth per inch and a 0.011″ or 0.3 mm kerf).  Its curved blade allows me to remove a small piece of the batten with less chance of damaging the planks.



[image error]


(photo by Sam Browning)



The battens are carefully marked and cut. I have to make sure the plank is clean where the new rib will go.  I clamp the rib in position making sure it fits well against the keelson and the original rib.



[image error]


(photo by Sam Browning)



When the new rib is in place, I drill a pilot hole through the rib and plank at the centre of each rib. Then, I push a 19 mm (¾”) copper canoe nail in from the outside.  The nail is then dubbed towards the keelson and clinched tight.  Then, I pilot, dub and clinch three more nails into each plank as well as one at each batten.  I cut the rib flush with the sheer-line and shape the rib-top to match the existing ribs.



[image error]


(photo by Sam Browning)



At the gap, where the broken rib is exposed, I cut it off in line with the battens.



[image error]


(photo by Sam Browning)



In some sections, retention of the original hull shape was facilitated by clamping a hardwood batten on the outside of the exposed original ribs.



[image error]


(photo by Sam Browning)



The broken sections of original rib were cut away with the inlay saw as well as the sections of batten required to allow for positioning of the new rib which was then soaked, steamed and clamped in place.



[image error]


(photo by Sam Browning)



A total of twelve broken ribs were sistered in this canoe. The ribs were repaired in stages, doing every second rib along the length of the canoe in order to maintain the shape of the hull as much as possible.


[image error]


The entire restoration process (including rib repairs and replacement) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on April 29, 2019 12:41

April 13, 2019

“Path of the Paddle” Films by Bill Mason — Homage to the Wood-Canvas Canoe

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


[image error]


The National Film Board of Canada (NFB) website is a treasure trove of beautiful short films.  Among my personal list of favourites is the Path of the Paddle series by Bill Mason.  Of the four films in the series, Path of the Paddle Solo Whitewater (1977) is the one I tend to watch over and over again.  Not only is the photography outstanding, I get a thrill every time I see a wood-canvas canoe being jockeyed through 3′ (one meter) standing waves in a wild river.


[image error]


The canoe featured by Bill Mason in the film is a Chestnut Pal (16′ pleasure canoe).  Its gorgeous lines, distinctive red colour and hand-woven cane seats gives the film a touch of class.


[image error]


One of my favourite occupations while watching any film, is looking for and finding continuity glitches.  In this one, Bill navigates his Chestnut Pal through a particular set of rapids.  Meanwhile, the canoe is alternately being paddled empty and then is loaded with canoe packs — switching back and forth as if by magic.


[image error]


I enjoy watching the Chestnut Pal handle challenging rapids with grace and style.  For a general-purpose canoe that is 12.5″ (32 cm) deep with a 36″ (92 cm) beam, its ability to handle these conditions is impressive.  That said, I like to keep in mind that Bill was able to run the same section of river many times and select the runs that worked out (the key to good story-telling is good editing).


[image error]


For anyone unfamiliar with wood-canvas canoes, this film is an education in just how durable they are.  I love watching Bill bumping and thumping off rocks in his Chestnut Pal.  Especially impressive is one sequence where the canoe hits an exposed boulder broadside in the river and lives to tell the tale.


[image error]


Bill plays fast and loose with cinematic continuity during a sequence discussing how to handle the canoe in high-water conditions.  We watch him start into a class 3 rapid in his Chestnut Pal (note the hand-woven cane seat).


[image error]


Then, the canoe miraculously survives a near upset.  Indeed, this would have been a miracle if Bill was paddling his Chestnut Pal.  However, a closer look reveals that the canoe capable of handling this situation is not a Chestnut Pal but rather a Chestnut Prospector (16′ wilderness tripping canoe) that is 14.5″ (37 cm) deep — note the all-wood slat seats.


[image error]


The Chestnut Prospector is perfectly designed to handle class 3 rapids.  The extra depth keeps the water out of the canoe as does the fact that the hull is flared (V-shaped) about 4′ (1.2 meters) from each end.  Bill painted all of his canoes the same colour in order to allow him to interchange them during filming.


[image error]


The photography in these films is absolutely stunning.  The image of a red canoe on the water has become a major part of Canadian iconography due in no small part to Bill Mason and his use of red Chestnut canoes in his films.


[image error]


The Chestnut Pal is one of the best general-purpose canoes ever designed.  However, it is not designed to handle class 3 rapids.  Apparently, that did not stop Bill Mason from trying.  I applaud him for showing us the limits of this amazing canoe.


[image error]


I encourage you to make your way to the NFB website and check out the Path of the Paddle films by Bill Mason.  They are, for me, well worth the time and effort.

 •  0 comments  •  flag
Share on Twitter
Published on April 13, 2019 11:58

April 8, 2019

A Restorer’s Guide to a Chestnut Bobs Special Wood-Canvas Canoe

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


The blogs I do on the specifications of canoe components for various types of canvas-covered canoes seem to be quite popular.  Apparently, I am the only one out there taking the time to write about this stuff and share it with others on-line.  This time around, I am presenting a restorer’s guide to the Bobs Special from the Chestnut Canoe Company.


[image error]


This canoe was one of two lightweight pleasure canoes built by Chestnut (the other was an 11’ solo canoe called the Featherweight that weighed about 38 pounds).  Before I talk about the canoe, I’d like to clarify the name.  According to Roger MacGregor in his book When the Chestnut was in Flower, Henry and William Chestnut were real history buffs.  The telegraph code for the 15’ 50-Lb. Special was BOBS and made reference to Lord Roberts, a major figure during the Second Boer War in South Africa. Over the years, as this wide, light-weight canoe became more difficult to keep under the weight limit of 50 lbs. (the average weight was 58 pounds while the carrying capacity was 700 pounds), they changed the name.  I have seen a variety of Chestnut catalogues call it Bob’s Special, Bob Special and Bobs Special.  So, feel free to take your pick.


[image error]


If you happen to have a Bobs or have been lucky enough to come across one in need of some TLC, you will notice what a sweet little canoe this is.  It paddles like a dream which is surprising for a canoe that is 37” (94 cm) wide.  Its bottom has a shallow-arch that reduces the waterline width when paddled with a light load.  There is a fair amount of rocker in the ends which adds to its maneuverability.  At the same time, it is not difficult to stand up in a Bobs – making it ideal for fly-fishing or general recreational paddling for a less experienced paddler.


[image error]


One little note here: I am listing all of the dimensions in inches.  I apologize to all of you who are working in metric.  The canoes were built with imperial measurements originally, so I find it easier and more accurate to stick with this measurement scale.


[image error]


 


Inwales –The inwale is a length of White Ash or Douglas Fir 15/16” high with the edge grain visible on the top surface.  It is fashioned to fit the tumblehome present on most Chestnut canoes.  Therefore, the top surface is 9/16” wide while the bottom width is 11/16”.  The last 18” or so at each end is tapered down to about ½” wide (top and bottom) along the sides of the decks.  All of the transverse components (centre thwart and seats) are attached to the inwales with 10-24 (3/16”) galvanized steel carriage bolts.  I replace these with 10-24 silicon-bronze carriage bolts.


[image error]


The gunwales (both inwales and outwales) are pre-bent about 18” from the ends.  If you are replacing these components, the wood will have to be soaked for 3 days, heated by pouring boiling water over them and bent onto custom-built forms in order to get a proper fit.


[image error]


 


Outwales – The outwales are also made of White Ash or Douglas Fir.  Depending on when the canoe was built, the outwales may have a chamfered edge on the bottom of the outside surface.  Water often gets trapped under the outwales and results in rot on the inside surface of the originals because they assembled the canoe first and then applied paint and varnish.  Consequently, the inside surfaces of the outwales are bare wood.  Therefore, I usually end up replacing this component.  Prior to installation, I seal the wood on all surfaces with a couple of coats of spar varnish.  Unlike the original builders, I do all of the painting and varnishing first and then assemble the canoe.


[image error]


 


Decks – The decks the Bobs Special were made of hardwood – usually maple, white ash or white oak.  Sometimes, they used mahogany to help reduce the overall weight.  By the time you start restoring your canoe, the decks are often rotted along with the stem-tops and inwale-ends.  They are attached to the inwales with six 1¾” #8 bronze wood screws.  As with the outwales, I help prevent future rot by sealing the decks on all surfaces with a couple of coats of spar varnish.  The deck extends about 18” into the canoe from the end.


[image error]


 


Stem-Top – You will rarely if ever have to replace the entire stem.  However, I rarely see an original stem-top that is not partially or completely rotted away.  Because the top 6” or so of the stem is straight, you can usually make the repair without having to pre-bend the wood to fit the original stem-profile.


[image error]


 


Keel – The Bob Special had a regular (tapered) keel installed.  Use a piece of hardwood (the original was ash) and taper each end to 3/8” wide.  The overall length is about 13’.  It will accept the brass stem-band which is 3/8” wide.


[image error]


 


Ribs – The Bobs Special was constructed with so-called “regular” ribs (2-3/8” wide) that were ¼” thick instead of the normal 3/8”.  They create a light-weight canoe but are not as robust as the regular ribs.  You will probably encounter several broken ribs in your canoe restoration.


The edges of the ribs are chamfered in most Bobs Specials.  Replicate the angles found in your canoe.  Often, the edge closest to the centre of the canoe has tapered ends (11° chamfer) while the edge closest to one end of the canoe is chamfered about 25°.


[image error]


Planking – The planking in Chestnut Canoes was made of either Eastern White Cedar or Western Red Cedar.   Although the planks started out at 5/32” thick, you will probably be shaving replacement planks down to match the original planks.  Again, this results in a lighter, less robust canoe.  You will probably encounter many broken planks in your canoe.


[image error]


Seats – The seat frames are made of ¾” ash, oak or maple that is 1½” wide.  Both seats are suspended under the inwales with 10-24 carriage bolts and held in position with 5/8” hardwood dowel.  The rear stern seat dowels are 1¾” long while the front dowels are ¾” long.  All of the bow seat dowels are ¾” long.  The forward edge of the bow seat is about 51½” from the bow-end of the canoe while the forward edge of the stern seat is about 39½” from the stern-end of the canoe.


[image error]


Centre Thwart – The thwart is made of ¾” ash that is 2½” wide.  It tapers from the centre to create handle grips on either side that are 2” wide.  They were attached directly under the inwales with galvanized steel 10-24 carriage bolts.  As with every component in the canoe, I seal the entire thwart with a couple of coats of spar varnish prior to installation and replace the original galvanized steel bolts with silicon bronze bolts.


[image error]


All of this (and much more) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.

 •  0 comments  •  flag
Share on Twitter
Published on April 08, 2019 12:14

March 27, 2019

How to Remove Fiberglass from a Wood-Canvas Canoe

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


For those of you new to this blog and have not heard me on this topic before, let me be as clear as I can be: To anyone thinking about applying fiberglass to a wood-canvas canoe, I say, “DON’T DO IT!”  To anyone wanting to remove fiberglass from a wood-canvas canoe, the short answer is: HEAT.


Wood-canvas canoes are a product of a by-gone era; a time before planned obsolescence — when things were built with the long term interests of the consumer in mind.  The whole idea of building a canoe with wood and canvas was to have a vessel that lives and breathes.  These canoes work in the natural environment and are part of it.  They are held together with tacks and screws – no glue.  The wood flexes and moves with the water around it.  When part of the canoe breaks or rots, it can be repaired or replaced with comparative ease because it is designed to be taken apart and rebuilt.  As long as there are people who know how to restore canvas-covered canoes, they will live forever.


It has been about forty years since these canoes were the standard in the marketplace.  Not only has the technology of wooden canoe repair faded into obscurity, but the mindset of both manufacturers and consumers has also changed.  Synthetic materials are now generally seen as better – easier, tougher and longer lasting.  The consumer has been convinced that the new materials can improve that which is outdated or at least maintain it quickly and easily.


When it comes right down to it, wooden canoes and fiberglass just don’t mix.  Since the ribs and planking are held together with tacks, they flex and move naturally.  Over the years, the tacks tend to work loose and eventually have to be either re-clinched or replaced. Conversely, fiberglass resin is rigid.  Once applied, it tends to resist any movement.  The combination of a flexible hull and a rigid outside layer results in cracked or delaminated resin.  The tacks can also wear against the resin from the inside to the point where they come right through the resin.  It can take several months or several decades, but at some point the canoe needs to be repaired and the fiberglass has to come off.  It is then that the real problem comes to light.  All of that synthetic resin has to be removed.  It is a long, painstaking process that usually has you cursing the person that put the stuff on in the first place. The moral of the story is: Avoid applying fiberglass to the hull of a wood-canvas canoe.  Learn how to re-canvas the canoe or find a professional to do it for you.



This leads us into the next question: How do you remove fiberglass from a wood-canvas canoe?  All you require is a professional-grade heat-gun, a 2” putty knife, a pair of pliers, safety equipment (work gloves, safety glasses and a respirator mask) and lots of patience.  The first step is to move the canoe into a well ventilated work space – preferably outdoors.  Then start at an edge of the canoe and apply heat to the resin.



At this point it is important to note that fiberglass resins come in two basic types – polyester and epoxy.  Polyester resins were the first to be developed.  If your canoe had fiberglass applied to it in the 1970’s or earlier, you can bet that polyester resins were used.  They tend to become brittle and deteriorate rapidly, so if the fiberglass on your canoe is delaminating it is most likely that you are dealing with a polyester resin.  Fortunately, this makes the removal of the fiberglass relatively quick and easy.  In many cases, the cloth can be ripped off by hand with very little need for heat.  When I say rip, please be gentle.  If you get carried away and pull at the fiberglass cloth too rapidly, you could end up tearing sizeable chunks of planking off the canoe as well (I speak from first-hand experience).



Epoxy resins hit the market in a big way in the 1980’s and are the standard today.  They are applied by first mixing a hardener with a resin in a two-part formula.  What results is a strong, tough plastic that bonds very well to wood.  Unfortunately, this means that the removal process is arduous and painstaking.


[image error]


As mentioned earlier, start at an edge of the canoe and apply heat to the resin.  If you are dealing with epoxy resin, you will probably have to apply the heat for several minutes before the cloth begins to respond to your attempts to lift it with the putty knife.  At some point, it does let go and the fiberglass cloth can be separated from the canoe.  Then move a few centimeters and continue the process.  Again, polyester resins let go fairly quickly.  You will find that large sheets of cloth come off in fairly short order.  I usually grab the cloth with a pair of pliers rather than with my hand.  Even with work gloves on, the pliers prevent nasty encounters with heat and/or sharp edges of fiberglass (again, this is the voice of experience talking).


[image error]


Once all of the fiberglass cloth is removed, return to the canoe hull with the heat gun and a putty knife.  Apply heat to any patches of resin still stuck to the wood.  Then, scrape the resin off.  Be prepared to settle into hours of tedious work.  It typically takes 15 to 20 hours to remove the fiberglass cloth and resin from a 16′ canoe.



Once you are back to the bare wood, the restoration is like that of any other wood-canvas canoe.  So, enjoy the pleasures of life in the slow lane, stay away from fiberglass and celebrate the fact that you have a wood-canvas canoe.


Many people complement me on the great fiberglass job on my canoes. They are shocked to learn that the canoes are covered with painted canvas.


Many people complement me on the great fiberglass job on my canoes. They are shocked to learn that the canoes are covered with painted canvas.


[image error]


All of this (and much more) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon and/or Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on March 27, 2019 11:53

March 21, 2019

How To Make Solid Hardwood Stems for a J. H. Rushton Indian Girl Wood-Canvas Canoe

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


During the restoration of a wood-canvas canoe, it is rare to have to replace the entire stem in the canoe. However, when faced with the restoration of a canoe which is more than 100 years old, a new stem (or two) is more than likely going to be part of the project.


[image error]


I restored a 1905 J.H. Rushton Indian Girl canoe. Both stems had extensive rot and one was broken in two places.  Rushton made his stems from a solid piece of rock elm.  Since this wood is nearly extinct now (thanks to Dutch Elm Disease), I used straight-grained ash 1″ (25mm) thick (at the lumber yard this is referred to as 4/4  ̶  pronounced four-quarters).


[image error]


The first step is to remove the stems from the canoe. I use both a tack remover and a Japanese concave cutter bonsai tool to remove the fasteners without doing too much damage to the ribs, planks and stems in the canoe.


[image error]


The next step is to create a bending form. Here, I present the dimensions of the bending form required for the Rushton Indian Girl.


[image error]


It is comprised of three layers of 5/8″ (16mm) plywood. I ask my local building supply centre if they have any damaged sheets of plywood.  I can get all of the wood I require for a fraction of the cost of full sheets of plywood.  All three piece have the same curve but the centre piece of plywood has a longer base which clamps easily into a work-bench vice.


[image error]


I start by placing the original stem on one piece of plywood and drawing the inside curve of the stem onto it.


[image error]


I then keep the stem-top in the same location as the original while rotating the stem until the curve is about 3½” (9cm) greater than the original. The form shape is then drawn onto the plywood and is extended about 6″ (15cm) at both ends to accommodate the clamping system.


[image error]


The form shape is cut with a saber saw or band saw. The first piece is then used as a template for the other two pieces.  Once assembled, the form is sanded more or less square with a belt sander or an angle grinder set up with a 24-grit wood grinding disk.  The final form is 1.875″ (48mm) wide.


[image error]


The base-end of the stem is 1.1875″ (30mm) wide and 0.875″ (22mm) thick. I bend a piece of ash which is 1¼” (32mm) wide and 1″ (25mm) thick.  This allows me to shape an exact replica of the original.


[image error]


The clamping system is attached to the bending form with enough space for the new wood and a backing strip. The new stem stock is soaked in water for four days, steamed for 60 minutes and bent onto the form where it remains for at least a week.  When removed from the form, the new wood will spring-back slightly and ought to come to the same shape as the original (or close enough).


[image error]


The original stem is much more than just the curve in its profile. It is tapered at the stem-end, angled to accept planking and notched to accept ribs.  Draw the rough dimensions and contours onto the new stem (first with a pencil and then with a permanent ink pen).


[image error]


Use a Japanese cross-cut saw or a dovetail saw to cut the sides of the rib notches at the correct angles and depths. Use a wood chisel and mallet to remove the bulk of the material in each notch.


[image error]


Check the dimensions of each notch on the original and use the chisel to shave each new notch to the desired thickness.


[image error]


Use an angle grinder set up with a 24-grit wood sanding disk to carve the desired angles and tapers into the new stem.


[image error]


Work slowly and carefully with a random-orbital sander and 60-grit sandpaper (checking dimensions with calipers against the original) until the new stem is an exact replica of the original.


[image error]


Turn the canoe upside down and use spring clamps to hold the new stem in place while you drill pilot holes for bronze ring nails to attach it to the ribs.


[image error]


[image error]


Use a cobblers hammer backed with a clinching iron to drive the ring nails tight.


[image error]


Turn the canoe right-side up and sight down the centre-line. Position the stem so it is lined up straight down the centre-line and clamp it in place.  Pre-drill holes for 16mm brass canoe tacks and attach the new stem to the original planks.


[image error]


Mark the height of the stem-top against the underside of the inwale-ends.


[image error]


Use a Japanese cross-cut saw to trim the stem-top to its desired height. I cut it a little long and use a random-orbital sander to achieve a snug fit.


[image error]


Attach the rest of the planking to complete the job.


[image error]


The entire restoration process (including stem repairs and replacement) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on March 21, 2019 15:27

March 19, 2019

How to Replace Pocketed Inwales in a 1905 J. H. Rushton Indian Girl Wood-Canvas Canoe

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


[image error]


In the early days of wood-canvas canoe construction (late 1800’s until about 1906), builders (primarily in up-state New York and Maine) tried to emulate the birch bark canoes in the region. Like birch bark canoes, they constructed their hulls with cedar ribs and planks.  They also emulated the look of the gunwales.  The inwales and outwales of birch bark canoes are lashed together and the rib-tops are whittled to wedges which are forced up between the inwales and outwales.


[image error]


To replicate this look, the builders cut pockets in the inwales into which the rib-tops were fitted and nailed. The outwales were attached (with brass screws) directly to the inwales to create a closed gunwale.  This looks beautiful.  However, with regular use, water collects in the pockets and creates a moist environment perfect for the growth of the fungi that cause wood rot.  Around 1906, all of the builders transitioned to an open gunwale system which allows water to drain quickly from the canoe.


[image error]


[image error]


To describe and document the replacement of pocketed inwales, I worked on a 1905 J.H. Rushton Indian Girl canoe. This particular canoe was in pretty rough shape when it arrived in my shop, but I was able to determine the original dimensions of the component parts from salvaged pieces.


[image error]


Replacing the original inwales is complicated by the fact that the canoe is already built. In 1905, the builder started constructing the canoe by making the inwales first (complete with pockets already cut).  He then placed them in the building mould and fit the rib-tops into the pockets.  The process of replacing the inwales is the exact opposite.  The inwales must be fitted to the canoe. Then the position of each pocket is marked and cut before the inwale is installed.


[image error]


Rushton trimmed his Indian Girl canoes with cherry. The first step is to cut new cherry stock 1″ (25mm) wide and 7/8″ (22mm) high.  Then, run the stock through the table saw with the blade angled 8° and 5/8″ (16mm) high to create a rabbet on the outside face ¼” (7mm) from the top surface and 3/16″ (5mm) deep at the top.


[image error]


Arrange two 10′ (3 meters) pieces for each inwale and mark the location and orientation of a scarf joint on the four pieces of inwale stock. Soak about 7′ (2 meters) of each piece at the non-scarf joint end for three days.  Meanwhile, build a bending form for the ends of the inwale stock.


[image error]


Heat the ends of the inwale stock with boiling water and bend them onto the form. The bend is not severe, so a backing strip is not required.  Allow the wood to dry for about a week before removing them from the form.


[image error]


Cut a scarf joint angle into the end of one of the pieces (I arbitrarily chose the bow piece) to be used for each inwale. Fit the bow and stern pieces of inwale stock for one side of the canoe into the canoe and match the curve at the ends to the rib-tops in the canoe.  Clamp them in place with lots of spring clamps.


[image error]


[image error]


Overlap the bow and stern pieces and mark the position of the scarf joint on the stern piece for the inwale.


[image error]


Cut the scarf joint angle in the stern piece, use polyurethane glue to splice the bow and stern pieces into a full-length inwale and allow it to cure overnight. Perform this sequence on the other side of the canoe to create two inwales.


[image error]


Once the glue has cured, sand the joint smooth.  Then, clamp one of the full-length inwales into the canoe. Use a pencil to mark the position of every rib-top in that inwale.  Remove it and do the same thing for the other side.  Be sure to label each inwale so you know to which side it belongs.


[image error]


Set up a drill press as illustrated and prepare in-feed and out-feed supports for the inwale.


[image error]


Cut the pockets on both inwales. You will need help from a second person to guide the inwale through the curves at the ends.


[image error]


Install one inwale and secure it with clamps at every second rib-top. Pre-drill  two ¾” bronze ring-nails in each rib-top.


[image error]


Use a clinching iron as backing while you drive in the nails. Once the first inwale is fully installed, repeat this process for the second inwale.


[image error]


[image error]


Meanwhile, make new cherry decks for each end.


[image error]


[image error]


Soak the wood for three days, steam the wood for 60 minutes, bent the decks in a press and allow the wood to dry in the press for a week.


[image error]


Use a flexible straight edge and a permanent ink pen to mark the inwale tapers at both ends of each inwale.


[image error]


Use a saber saw to cut the tapers into each inwale-end.


[image error]


Smooth the tapers with a random orbital sander and 80-grit sandpaper.


[image error]


Hold the new stem-top (either a new piece spliced into the original stem or, in this case, a completely new stem) against the inwale-ends and mark where the stem-top meets the underside of the new inwale-ends.


[image error]


Use a Japanese cross-cut saw to cut the stem-top.  It is best to cut it a little long initially and sand it gradually (while checking frequently with dry fitting) until the stem-top fits snugly under the inwale-ends.  The process of replacing the stems in a 1905 J.H. Rushton Indian Girl will be described in a separate blog (to be posted soon).


[image error]


Use a ratchet strap to pull the end of the canoe together. Then, dry-fit the deck.  Line up a straight edge with the centre-line of the canoe directly above the stem-end at each inwale-end.  Then, mark the angle for the inwale joint.


[image error]


Release the ratchet strap and cut the inwale joint on each inwale-end.


[image error]


Sand the joint faces smooth with a random orbital sander.


[image error]


Re-attach the ratchet strap and pull the end of the canoe together again. This time, draw the inwales together until the deck fits properly.  Check the inwale joint and make any adjustments to the angle until it fits exactly.


[image error]


Install the deck and attach it to the inwales with 1½” #8 bronze flat-head wood screws (counter-sunk).


[image error]


Use a random orbital sander set up with 60-grit sandpaper to sand the deck and inwales until they are perfectly flush.


[image error]


The entire restoration process (including stem-top repairs, inwale replacement and deck repairs) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on March 19, 2019 13:40

February 27, 2019

How to Paint Wood-Canvas Canoes

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


Once the canoe has been canvassed, the filler has been applied and the keel and stem-bands have been installed, it is ready for paint.  Here are five secrets for a professional paint job:


Kolesnik 05


Tip #1 – Paint First, Then Assemble – Fifty years ago, the canoe builders in the factories were in production mode.  To save time and space, they installed the outwales before applying varnish and paint.  However, this caused two problems in the years to follow.  First, the canvas under the outwales is not protected with paint.  Second, the inside surface of the outwales is bare, unprotected wood.  Over years of use, water can become trapped under the outwales.  This moist environment can be ideal for growing the fungi that cause rot.


canvas rot


Two things can happen: a) the canvas can rot under the outwales causing the canvas to detach from the canoe and; b) the outwales can rot from the inside out.


outwale 11 DL


To avoid these problems, paint the canvas and varnish the outwales (being sure to seal all of the surfaces) before the outwales are installed.  Some builders go so far as to apply varnish along the cut edge of canvas before the outwales are installed.


lagging 14


Tip #2 – Sanding, Sanding and More Sanding – Generally speaking, the more you sand, the smoother the final finish.  Also, the more meticulous you are about sanding, the better the end results.  Before starting to paint the filled canvas, sand the filler with 120-grit sandpaper.  I use a random-orbital sander for this job.


raised tack


Any tacks in the canoe hull that are not flush to the hull will show up as you sand.  It is essential to stop sanding immediately and re-clinch the tack to avoid creating a nice, round, tack-sized hole in the canvas.


wet sanding 02


For all practical purposes, oil-based alkyd enamel paint is essentially heavily pigmented varnish.  Both are handled in exactly the same way except that while the surface of varnish is scratched with steel-wool between coats, the paint surface is scratched with wet sandpaper.  I use 120-grit wet sandpaper between the first and second coats of paint.  I then use 220-grit wet sandpaper between the second and third coats and, if I decide to apply four coats of paint, I use 320-grit wet sandpaper between the third and fourth coats.  As always, be sure to clean the surfaces well before applying the finish.  Remove sanding dust with a brush or vacuum.  Then, remove remaining dust with a tack cloth.


thinner


Tip #3 – A Little Thinner – Some articles about oil-based paints and varnishes would have you believe that avoiding streaks and bubbles in the final finish is one of life’s great challenges.  In fact, there is no great mystery to it.  Thin the paint (or varnish) about 12% with mineral spirits (paint thinner) before using it.  The thinned paint will self-level once it is applied.  The additional solvent also allows the paint to dry before sags and drips develop.  For a canoe, any alkyd enamel works well and provides a tough, flexible finish.  Recent changes to federal regulations in Canada make it difficult, if not impossible, to buy oil-based marine enamel.  Just go to your local hardware store and pick up a gallon of oil-based “rust paint” (Rustoleum, Tremclad or any store-brand).  The label will say “For Metal Use Only”.  I’m sure they just forgot to include “Canvas-Covered Canoe” in the label.  I would gladly use a water-based paint for the canvas, but at this point, oil-based alkyd enamel is the only paint that works.


first coat


Tip #4 – Tip It, Then Leave It – As with any paint, you must maintain a “wet edge” while applying it to a large surface.  Therefore, it is important to work in small sections of the canoe.  Apply the paint quickly and vigorously to get complete coverage.  Don’t worry about streaks or bubbles.  Just make sure the paint covers the area without using too much.  I use a high-quality natural bristle brush to apply the first and second coats.


tipping


I use a disposable foam brush to apply the third (and, if you so choose, the fourth) coat of paint.  Once you have applied paint to a small section of the canoe, hold the brush at a 45° angle to the surface and lightly touch the brush to the wet surface.  Move the brush quickly over the surface to “tip” the finish.  Do this first vertically from top to bottom and then horizontally.  After the section is painted and tipped in two directions, move to the next section.  Continue in this way until you have done the entire canoe.  Check to make sure there is no excess paint dripping anywhere – especially at the ends.  Then, go away and leave it alone for 48 hours.


carnauba wax


Tip #5 – Protect Your Work – Are we done yet?  Well, that depends on whether or not you want to protect that beautiful new finish.  Once I have applied the final coat of paint and allowed it to dry for two days, I apply a coat of carnauba wax (pronounced car-NOO-bah) obtained at the local auto supply shop.


canvas 11 CP


Follow the directions and use lots of muscle (or a good buffing wheel).  If you’ve never tried it, waxing the canoe is worth it just for the experience of shooting effortlessly through the water.  It’s like waxing a surfboard – the results are amazing.  Also, the paint is protected from minor scuffs and scratches.  Any oil-based finish takes several months to cure completely, so the wax helps protect it in the early months of use.


[image error]


All of this (and much more) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon and/or Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on February 27, 2019 09:54

February 25, 2019

How to Rebuild a Rotted End in an Old Town Otca Wood-Canvas Canoe ̶ Part 2

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


[image error]


I started describing the process involved in rebuilding the end of a 1967 18′ Old Town Otca canoe in part 1 of this blog. In it, I described how to replicate the deck.  Now, I will describe how to rebuild the stem-top and inwale-ends of this canoe.


[image error]


Unless the stem-top repair is very short, it will require the use of a new piece of ash that is pre-bent to fit the curve of the original stem. Since you are not replicating the entire stem, the curved section can be created by bending the new ash onto any stem-form.  I used a stem-form built to make new stems for a 1905 J.H. Rushton Indian Girl canoe.  The 4/4 stock was soaked for four days , steamed for 60 minutes and bent over the form with a backing strip.  It was left to dry for a week before removing it from the form.


[image error]


Hold the newly bent stock up to the OTCA stem and shift it around until you find a section that matches the portion to be repaired. Mark the new stock as well as the point on the inwales where the stem meets them.  Cut a scarf joint in the original stem and match the scarf joint in the new ash stock.  Use polyurethane glue and clamp the new section of stem into the original overnight.


[image error]


Use an angle grinder fitted with a 24-grit sanding disk to shape the new section roughly to the dimensions of the original. Leave extra material until you are ready to carve the stem-top to its final dimensions near the end of the project.


[image error]


Since the inwale-ends have to be pre-bent to match the original curve of the sheer-line, the first step is to build a bending form. Clamp a large piece of cardboard to the sheer-line of the canoe at one end.


[image error]


Use a permanent ink pen to mark the curve of the sheer-line on the cardboard.


[image error]


Remove the cardboard from the canoe and cut out the sheer-line profile. You now have a template to transfer onto the bending form stock.


[image error]


The original curve was increased to compensate for spring-back. Here is the diagram of the bending form used for the OTCA gunwale-ends.


[image error]


I used two pieces of 2×8 spruce held together with 2½” deck screws to create a 3×8 bending form.


[image error]


The white oak stock is wide enough to create two bent inwales at the same time. Once the stock is bent, it will be sliced into two inwales on the table saw.  Soak the white oak stock for three days and steam it for about 60 minutes.  Then, you have about 30 seconds to bent it onto the form.  The bend is not large, so a backing strip is not required.  Allow the wood to dry in the form for about a week.


[image error]


Use a flexible straight edge (I use a steel rule) and a permanent ink pen to mark the angle of the scarf joint on the original inwale at a location well into solid wood. Also, mark the point at which the underside of the inwale meets the new stem-top.


[image error]


Use a saber saw or Japanese cross-cut saw to remove the rotted inwale-end along the scarf angle line.


[image error]


Smooth the scarf angle with a random-orbital sander set up with 60-grit sandpaper.


[image error]


Cut the newly bent inwale stock on the table saw to create the desired dimensions for both port and starboard inwales.


[image error]


Hold the new inwale directly under the original inwale and shift it around until you match the bend. Use a permanent ink pen to mark the location of the scarf joint on the new inwale.  Check to make sure the new inwale-end meets the new stem-top in the same place as the original.  Use a band saw to cut the scarf angle (other saws can do this job, but the band saw is the safest option and gives the best control).


[image error]


Dry-fit the new inwale-end and clamp it in place.


[image error]


Use a flexible straight edge and a permanent ink pen to mark the taper in the inwale-end.


[image error]


Cut the taper in the new inwale-end on the inside surface of the new stock. Be sure to leave extra material in order to allow for precise fitting later.  Then, dry-fit the tapered inwale-end.


[image error]


Sand the inside surface of the new inwale-end until it is a precise fit. I use a belt sander turned upside down.


[image error]


Create new inwale-ends for both the port and starboard sides. Use polyurethane glue, clamp them in place and allow them to cure overnight.


[image error]


[image error]


The next day, cut the new stem-top to length so it fits snugly under the new inwale-ends. I find it best to cut the stem a little long and sand it gradually (checking frequently) until it fits.  Then, sand the sides of the stem until it is flush with the outside surfaces of the new inwale-ends.  Again, work gradually and check often.


[image error]


Dry-fit the new deck and make sure everything is lined up with the centre-line of the canoe. Mark the location of the deck and attach it with 1½” #8 flat-head bronze screws (counter-sunk into the inwales).


[image error]


Use a random-orbital sander and 60-grit sandpaper to bring the deck flush with the top of the inwales.


[image error]


Cut the inwale-ends flush with the outside surface of the stem. Then, sand the deck and inwales smooth.  Complete the project by staining the new wood to match the orginal.


[image error]


The entire restoration process (including stem-top, inwale-end and deck repairs) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on February 25, 2019 10:21

February 22, 2019

How to Rebuild a Rotted End in an Old Town Otca Wood-Canvas Canoe — Part 1

by Mike Elliott, Kettle River Canoes

email: artisan@canoeshop.ca


[image error]


Water tends to collect in the ends of wood-canvas canoes when they are used on a regular basis. This moist environment creates perfect growing conditions for the fungi that cause wood rot.  I have described the process of rebuilding the rotted ends of a wood-canvas canoe in my book  ̶ This Old Canoe.  However, when the canoe is built with a stylish upward sweep in the sheer-line at both ends, the repair job is much more involved.  For this discussion, I rebuilt the rotted end of a 1967 Old Town OTCA sailing canoe with sponsons.


[image error]


Often, the damage is not apparent until the end is taken apart. Only then can you see the rotted inwale-ends and stem-top.


[image error]


In this canoe, the bow deck was also rotted in the end. There are many ways to approach this repair.  Sometimes, all that is required is the application of wood-hardener and two-part epoxy putty.  In other cases, a new tip of solid wood can be spliced into the original deck with a scarf joint.  However, the damage is most often so severe that an entirely new deck has to be made.  In many canoes with highly-curved ends, the solid wood decks (almost an inch thick) are bent to follow the curve in the sheer-line.


[image error]


I have seen some people make a new deck by carving the curve into a piece of 8/4 (2″ or 5 cm thick) hardwood. Others laminate several thin slices of hardwood together on a form to create the curved deck.  In this example, I employed the same methodology used by the original builders  ̶  namely stem-bending the curve using a press.  The first step is to cut a new deck from a piece of 4/4 (1″ or 25 mm thick) hardwood (in this case I used white oak).


[image error]


The set-up is comprised of the new deck steam-bent between two solid-wood bending forms. They are both fashioned from a number (in this case, four) of 2×8 pieces of spruce lumber sandwiched together into a 6×8 block (held together with 2½” deck screws).  The bottom block has the concave shape of the deck-bend cut into its top surface while the top block has the convex shape cut its bottom.


[image error]


The curve required to achieve the correct bent in the replica deck is greater than the actual curve. This is due to the fact that a solid piece of wood will spring-back a little once the tension is removed in the press.  To save you the trial-and-error process involved in getting the proper curve, I present a diagram that will allow you to get it right the first time.


[image error]


Pressure for bending the deck is generated with an automotive scissor-jack forcing the bending forms together in the middle of a press-frame constructed from 2×6 lumber. In this case, the inside dimensions of the press are 26½” (67.3 cm) high by 31″ (79.7 cm) wide.


[image error]


The new deck is left in the press for a week to dry completely. When removed, the new deck has exactly the same bend as the original.  Once the deck is ready, new inwale-ends have to be spliced into the original inwales.  This will be discussed in part 2 of this blog.


[image error]


The entire restoration process (including stem-top, inwale-end and deck repairs) is described in my book – This Old Canoe: How To Restore Your Wood Canvas Canoe.

If you live in Canada, CLICK HERE to buy the book.

If you live in the USA, CLICK HERE to buy the book.

If you live in the UK, CLICK HERE to buy the book.

Si vous habitez en France, CLIQUEZ ICI acheter le livre.


If you have read the book, please post a review on Amazon, Goodreads and/or any other review site.

 •  0 comments  •  flag
Share on Twitter
Published on February 22, 2019 08:09