Science, Order and Creativity Quotes

Rate this book
Clear rating
Science, Order and Creativity Science, Order and Creativity by David Bohm
205 ratings, 4.16 average rating, 21 reviews
Open Preview
Science, Order and Creativity Quotes Showing 1-14 of 14
“In other words, the creative person does not strictly know what he or she is looking for. The whole activity, therefore, is not regarded as a problem that must be solved but simply as play itself. Within this play it is not taken for granted that new things must always be different or that they can never in any significant way be related to what came before. Indeed, it could be suggested that the more different things are, the greater may be the importance in seeing how they are similar, and likewise, the more similar things are, the greater may be the value in perceiving their difference. Science, according to this argument, is properly a continuous ongoing activity. Through creative play and fresh perception there is a constant movement of similarities and differences, with each new theory differing in some subtle but significant fashion from what came before.”
David Bohm, Science, Order and Creativity
“The essential activity of science consists of thought, which arises in creative perception and is expressed through play. This gives rise to a process in which thought unfolds into provisional knowledge which then moves outward into action and returns as fresh perception and knowledge. This process leads to a continuous adaptation of knowledge which undergoes constant growth, transformation, and extension. Knowledge is therefore not something rigid and fixed that accumulates indefinitely in a steady way but is a continual process of change. Its growth is closer to that of an organism than a data bank.”
David Bohm, Science, Order and Creativity
“This proposal, of a creative plurality in scientific ideas and theories, does, however, raise a significant question: What is the relationship of science to reality? Is this plurality simply a matter of developing a number of different points of view which depend on the requirements of society or the particular preferences of the individual? If this is true, then it would appear that the idea of objectivity within science, as a means of obtaining some relative truth about nature, would no longer be valid. We suggest that there is indeed a meaning to a reality that lies outside ourselves but that it is necessary that we, too, should be included in an essential way as participators in this reality. Our knowledge of the universe is derived from this act of participation which involves ourselves, our senses, the instruments used in experiments, and the ways we communicate and choose to describe nature. This knowledge is therefore both subjective and objective in nature.”
David Bohm, Science, Order and Creativity
“William James who advocated a plurality of approaches that are dynamically related. In place of the monolithic unity of the paradigm, which is able to change only by being cracked and shattered in a revolution, would stand a form of unity in plurality.”
David Bohm, Science, Order and Creativity
“There is no logical reason, however, why, in the unfolding of scientific ideas, several theories may not offer alternative but equally valid and important accounts of a particular aspect of nature. Why must some of these theories be rejected almost as a matter of course? It could be objected that if the number of alternative theories became too large, then the whole scientific enterprise would become excessively diffuse and diluted. It is certainly true that without any established limits, ideas do tend to diverge from each other. However, there is also a natural tendency within scientific thinking for ideas to converge as well. Intelligent and creative perception of the different theories may, for example, give rise to new metaphors in which ideas are gathered together and the similarities and differences between them are explored and unfolded.”
David Bohm, Science, Order and Creativity
“as time passes, unsolved problems within a given paradigm tend to accumulate and to lead to ever-increasing confusion and conflict. Eventually some scientists, who are generally spoken of as geniuses, propose fundamentally new ideas and a “scientific revolution” results. In turn, these new ideas eventually form the basis of a new paradigm, and sooner or later, this rigidifies into “normal” science. In this way the cycle of revolution and “normal” science continues indefinitely.”
David Bohm, Science, Order and Creativity
“it must also be realized that a paradigm has the power to keep a whole community of scientists working on a more or less common area. In a sense, it could be taken as an unconscious or tacit form of consent. At first sight, the paradigm would be of obvious use to the scientific community. However, it also exacts a price in that the mind is kept within certain fixed channels that deepen with time until an individual scientist is no longer aware of his or her limited position.”
David Bohm, Science, Order and Creativity
“Paradigms clearly involve, in a key way, the process of taking ideas and concepts for granted, without realizing that this is in fact going on. Since this process takes place as the mind attempts to defend itself against what it believes to be a severe disturbance, a paradigm tends to interfere with that free play of the mind that is essential for creativity. Instead it encourages the process of playing false, especially in deep and subtle areas.”
David Bohm, Science, Order and Creativity
“there is instead a strong disposition to impose familiar ideas, even when there is evidence that they may be false. This, of course, creates the illusion that no fundamental change is required, when in fact the need for such a change may be crucial. If several people are involved, collusion will follow, as they mutually support one another in their false responses.”
David Bohm, Science, Order and Creativity
“In other words, the creative person does not strictly know what he or she is looking for. The whole activity, therefore, is not regarded as a problem that must be solved but simply as play itself. Within this play it is not taken for granted that new things must always be different or that they can never in any significant way be related to what came before. Indeed, it could be suggested that the more different things are, the greater may be the importance in seeing how they are similar, and likewise, the more similar things are, the greater may be the value in perceiving their difference. Science, according to this argument, is properly a continuous ongoing activity. Through creative play and fresh perception there is a constant movement of similarities and differences, with each new theory differing in some subtle but significant fashion from what came before. To sustain this creative activity of the mind,”
David Bohm, Science, Order and Creativity
“What is essential here is that the act of creative perception in the form of a metaphor is basically similar in all these fields, in that it involves an extremely perceptive state of intense passion and high energy that dissolves the excessively rigidly held assumptions in the tacit infrastructure of commonly accepted knowledge.”
David Bohm, Science, Order and Creativity
“To see the universal nature of gravitational attraction, Newton had to become free of the habitual compartmentalization of earthly and celestial matter, a form of fragmentation that was implicit within the tacit infrastructure of the “normal” science of his day. To break away from the habitual and commonly accepted modes of thought, which had been taken for granted for generations, required intense courage, energy, and passion. Newton had these in abundance, and at the height of his powers, he was always asking fundamental questions. The crucial factor in Newton’s vision, and indeed in the creation of all new ideas, is this ability to break out of old patterns of thought. Indeed, once this has been done, new perceptions and novel ideas appear to arise naturally.”
David Bohm, Science, Order and Creativity
“the idea that mathematics expresses the essential reality of nature was first put explicitly, in modern times, by scientists, such as Sir James Jeans and Werner Heisenberg, but within a few decades, these ideas were being transmitted almost subliminally. As a result, after passing through graduate school, most physicists have come to regard this attitude toward mathematics as being perfectly natural. However, in earlier generations such views would have been regarded as strange and perhaps even a little crazy—at all events irrelevant to a proper scientific view of reality.”
David Bohm, Science, Order and Creativity
“The mind’s tendency to hold on to what is familiar is enhanced by the fact that the overall tacit infrastructure is inseparably woven into the whole fabric of science as well as into its institutions, on which depends the professional security of each scientist. As a result, there is always a strong pressure against any individual scientist who threatens to “rock the boat.” But of course, this resistance is not confined simply to science but occurs in every walk of life when familiar and comfortable thoughts and feelings are threatened. People will therefore tend not to have the necessary energy and courage to call into question the whole tacit infrastructure of their field. But this becomes increasingly difficult to do as the whole infrastructure ultimately extends, in its implications, into the whole of science and even of society itself.”
David Bohm, Science, Order and Creativity