The Laws of Thermodynamics Quotes

Rate this book
Clear rating
The Laws of Thermodynamics: A Very Short Introduction The Laws of Thermodynamics: A Very Short Introduction by Peter Atkins
921 ratings, 3.89 average rating, 93 reviews
The Laws of Thermodynamics Quotes Showing 1-4 of 4
“Thermodynamics, like much of the rest of science, takes terms with an everyday meaning and sharpens them—some would say, hijacks them—so that they take on an exact and unambiguous meaning. We shall see that happening throughout this introduction to thermodynamics. It starts as soon as we enter its doors. The part of the universe that is at the centre of attention in thermodynamics is called the system. A system may be a block of iron, a beaker of water, an engine, a human body. It may even be a circumscribed part of each of those entities. The rest of the universe is called the surroundings. The surroundings are where we stand to make observations on the system and infer its properties. Quite often, the actual surroundings consist of a water bath maintained at constant temperature, but that is a more controllable approximation to the true surroundings, the rest of the world. The system and its surroundings jointly make up the universe. Whereas for us the universe is everything, for a less profligate thermodynamicist it might consist of a beaker of water (the system) immersed in a water bath (the surroundings).”
Peter Atkins, The Laws of Thermodynamics: A Very Short Introduction
“The second law has a reputation for being recondite, notoriously difficult, and a litmus test of scientific literacy. Indeed, the novelist and former chemist C. P. Snow is famous for having asserted in his The Two Cultures that not knowing the second law of thermodynamics is equivalent to never having read a work by Shakespeare. I actually have serious doubts about whether Snow understood the law himself, but I concur with his sentiments. The second law is of central importance in the whole of science, and hence in our rational understanding of the universe, because it provides a foundation for understanding why any change occurs. Thus, not only is it a basis for understanding why engines run and chemical reactions occur, but it is also a foundation for understanding those most exquisite consequences of chemical reactions, the acts of literary, artistic, and musical creativity that enhance our culture.”
Peter Atkins, The Laws of Thermodynamics: A Very Short Introduction
“The first law is essentially based on the conservation of energy, the fact that energy can be neither created nor destroyed. Conservation laws—laws that state that a certain property does not change—have a very deep origin, which is one reason why scientists, and thermodynamicists in particular, get so excited when nothing happens. There is a celebrated theorem, Noether’s theorem, proposed by the German mathematician Emmy Noether (1882–1935), which states that to every conservation law there corresponds a symmetry. Thus, conservation laws are based on various aspects of the shape of the universe we inhabit. In the particular case of the conservation of energy, the symmetry is that of the shape of time. Energy is conserved because time is uniform: time flows steadily, it does not bunch up and run faster then spread out and run slowly. Time is a uniformly structured coordinate. If time were to bunch up and spread out, energy would not be conserved. Thus, the first law of thermodynamics is based on a very deep aspect of our universe and the early thermodynamicists were unwittingly probing its shape.”
Peter Atkins, The Laws of Thermodynamics: A Very Short Introduction
“We are within a whisper of arriving at the first law. Suppose we have a closed system and use it to do some work or allow a release of energy as heat. Its internal energy falls. We then leave the system isolated from its surroundings for as long as we like, and later return to it. We invariably find that its capacity to do work—its internal energy—has not been restored to its original value. In other words,
the internal energy of an isolated system is constant.

That is the first law of thermodynamics, or at least one statement of it, for the law comes in many equivalent forms. Another universal law of nature, this time of human nature, is that the prospect of wealth motivates deceit. Wealth—and untold benefits to humanity—would accrue to an untold extent if the first law were found to be false under certain conditions. It would be found to be false if work could be generated by an adiabatic, closed system without a diminution of its internal energy. In other words, if we could achieve perpetual motion, work produced without consumption of fuel. Despite enormous efforts, perpetual motion has never been achieved. There have been claims galore, of course, but all of them have involved a degree of deception. Patent offices are now closed to the consideration of all such machines, for the first law is regarded as unbreakable and reports of its transgression not worth the time or effort to pursue. There are certain instances in science, and certainly in technology, where a closed mind is probably justified.”
Peter Atkins, The Laws of Thermodynamics: A Very Short Introduction