More on this book
Community
Kindle Notes & Highlights
by
Nate Silver
Read between
March 23 - April 11, 2020
You can get invited back on television with a far worse track record than Barone’s or Will’s—provided you speak with some conviction and have a viewpoint that matches the producer’s goals. An alternative interpretation is slightly less cynical but potentially harder to swallow: human judgment is intrinsically fallible. It’s hard for any of us (myself included) to recognize how much our relatively narrow range of experience can color our interpretation of the evidence. There’s so much information out there today that none of us can plausibly consume all of it. We’re constantly making decisions
...more
Some of the examples of failed predictions in this book concern people with exceptional intelligence and exemplary statistical training—but whose biases still got in the way. These problems are not so simple and so this book does not promote simple answers to them. It makes some recommendations but they are philosophical as much as technical. Once we’re getting the big stuff right—coming to a better understanding of probability and uncertainty; learning to recognize our biases; appreciating the value of diversity, incentives, and experimentation—we’ll have the luxury of worrying about the
...more
This is a book about information, technology, and scientific progress. This is a book about competition, free markets, and the evolution of ideas. This is a book about the things that make us smarter than any computer, and a book about human error. This is a book about how we learn, one step at a time, to come to knowledge of the objective world, and why we sometimes take a step back. This is a book about prediction, which sits at the intersection of all these things. It is a study of why some predictions succeed and why some fail. My hope is that we might gain a little more insight into
...more
The original revolution in information technology came not with the microchip, but with the printing press. Johannes Gutenberg’s invention in 1440 made information available to the masses, and the explosion of ideas it produced had unintended consequences and unpredictable effects. It was a spark for the Industrial Revolution in 1775,1 a tipping point in which civilization suddenly went from having made almost no scientific or economic progress for most of its existence to the exponential rates of growth and change that are familiar to us today. It set in motion the events that would produce
...more
While the printing press paid almost immediate dividends in the production of higher quality maps,10 the bestseller list soon came to be dominated by heretical religious texts and pseudoscientific ones.11 Errors could now be mass-produced, like in the so-called Wicked Bible, which committed the most unfortunate typo in history to the page: thou shalt commit adultery.12 Meanwhile, exposure to so many new ideas was producing mass confusion. The amount of information was increasing much more rapidly than our understanding of what to do with it, or our ability to differentiate the useful
...more
The words predict and forecast are largely used interchangeably today, but in Shakespeare’s time, they meant different things. A prediction was what the soothsayer told you; a forecast was something more like Cassius’s idea. The term forecast came from English’s Germanic roots,20 unlike predict, which is from Latin.21 Forecasting reflected the new Protestant worldliness rather than the otherworldliness of the Holy Roman Empire. Making a forecast typically implied planning under conditions of uncertainty. It suggested having prudence, wisdom, and industriousness, more like the way we now use
...more
The Protestants who ushered in centuries of holy war were learning how to use their accumulated knowledge to change society. The Industrial Revolution largely began in Protestant countries and largely in those with a free press, where both religious and scientific ideas could flow without fear of censorship.25 The importance of the Industrial Revolution is hard to overstate. Throughout essentially all of human history, economic growth had proceeded at a rate of perhaps 0.1 percent per year, enough to allow for a very gradual increase in population, but not any growth in per capita living
...more
The fashionable term now is “Big Data.” IBM estimates that we are generating 2.5 quintillion bytes of data each day, more than 90 percent of which was created in the last two years.36 This exponential growth in information is sometimes seen as a cure-all, as computers were in the 1970s. Chris Anderson, the editor of Wired magazine, wrote in 2008 that the sheer volume of data would obviate the need for theory, and even the scientific method.37 This is an emphatically pro-science and pro-technology book, and I think of it as a very optimistic one. But it argues that these views are badly
...more
This attitude might seem surprising if you know my background. I have a reputation for working with data and statistics and using them to make successful predictions. In 2003, bored at a consulting job, I designed a system called PECOTA, which sought to predict the statistics of Major League Baseball players. It contained a number of innovations—its forecasts were probabilistic, for instance, outlining a range of possible outcomes for each player—and we found that it outperformed competing systems when we compared their results. In 2008, I founded the Web site FiveThirtyEight, which sought to
...more
I came to realize that prediction in the era of Big Data was not going very well. I had been lucky on a few levels: first, in having achieved success despite having made many of the mistakes that I will describe, and second, in having chosen my battles well. Baseball, for instance, is an exceptional case. It happens to be an especially rich and revealing exception, and the book considers why this is so—why a decade after Moneyball, stat geeks and scouts are now working in harmony. The book offers some other hopeful examples. Weather forecasting, which also involves a melding of human judgment
...more
This highlight has been truncated due to consecutive passage length restrictions.
Lacking a proper theory for how terrorists might behave, we were blind to the data and the attacks were an “unknown unknown” to us. There also were the widespread failures of prediction that accompanied the recent global financial crisis. Our naïve trust in models, and our failure to realize how fragile they were to our choice of assumptions, yielded disastrous results. On a more routine basis, meanwhile, I discovered that we are unable to predict recessions more than a few months in advance, and not for lack of trying. While there has been considerable progress made in controlling inflation,
...more
There are entire disciplines in which predictions have been failing, often at great cost to society. Consider something like biomedical research. In 2005, an Athens-raised medical researcher named John P. Ioannidis published a controversial paper titled “Why Most Published Research Findings Are False.”39 The paper studied positive findings documented in peer-reviewed journals: descriptions of successful predictions of medical hypotheses carried out in laboratory experiments. It concluded that most of these findings were likely to fail when applied in the real world. Bayer Laboratories recently
...more
We are wired to detect patterns and respond to opportunities and threats without much hesitation. “This need of finding patterns, humans have this more than other animals,” I was told by Tomaso Poggio, an MIT neuroscientist who studies how our brains process information. “Recognizing objects in difficult situations means generalizing. A newborn baby can recognize the basic pattern of a face. It has been learned by evolution, not by the individual.” The problem, Poggio says, is that these evolutionary instincts sometimes lead us to see patterns when there are none there. “People have been doing
...more
A recent study in Nature found that the more informed that strong political partisans were about global warming, the less they agreed with one another.
To say our predictions are no worse than the experts’ is to damn ourselves with some awfully faint praise. Prediction does play a particularly important role in science, however. Some of you may be uncomfortable with a premise that I have been hinting at and will now state explicitly: we can never make perfectly objective predictions. They will always be tainted by our subjective point of view. But this book is emphatically against the nihilistic viewpoint that there is no objective truth. It asserts, rather, that a belief in the objective truth—and a commitment to pursuing it—is the first
...more
Bayes’s theorem is nominally a mathematical formula. But it is really much more than that. It implies that we must think differently about our ideas—and how to test them. We must become more comfortable with probability and uncertainty. We must think more carefully about the assumptions and beliefs that we bring to a problem.
The world has come a long way since the days of the printing press. Information is no longer a scarce commodity; we have more of it than we know what to do with. But relatively little of it is useful. We perceive it selectively, subjectively, and without much self-regard for the distortions that this causes. We think we want information when we really want knowledge. The signal is the truth. The noise is what distracts us from the truth.
The most calamitous failures of prediction usually have a lot in common. We focus on those signals that tell a story about the world as we would like it to be, not how it really is. We ignore the risks that are hardest to measure, even when they pose the greatest threats to our well-being. We make approximations and assumptions about the world that are much cruder than we realize. We abhor uncertainty, even when it is an irreducible part of the problem we are trying to solve. If we want to get at the heart of the financial crisis, we should begin by identifying the greatest predictive failure
...more
The ratings issued by these companies are quite explicitly meant to be predictions: estimates of the likelihood that a piece of debt will go into default.5 Standard & Poor’s told investors, for instance, that when it rated a particularly complex type of security known as a collateralized debt obligation (CDO) at AAA, there was only a 0.12 percent probability—about 1 chance in 850—that it would fail to pay out over the next five years.6 This supposedly made it as safe as a AAA-rated corporate bond7 and safer than S&P now assumes U.S. Treasury bonds to be.8 The ratings agencies do not grade on a
...more
When the National Weather Service says there is a 90 percent chance of clear skies, but it rains instead and spoils your golf outing, you can’t really blame them. Decades of historical data show that when the Weather Service says there is a 1 in 10 chance of rain, it really does rain about 10 percent of the time over the long run.*
But the times when inaccuracy ruins your plans always stick out the most. Frustrating outcomes remain the most salient and build on each other over time.
In the instance of CDOs, the ratings agencies had no track record at all: these were new and highly novel securities, and the default rates claimed by S&P were not derived from historical data but instead were assumptions based on a faulty statistical model. Meanwhile, the magnitude of their error was enormous: AAA-rated CDOs were two hundred times more likely to default in practice than they were in theory. The ratings agencies’ shot at redemption would be to admit that the models had been flawed and the mistake had been theirs. But at the congressional hearing, they shirked responsibility
...more
Robert Shiller, the Yale economist, had noted its beginnings as early as 2000 in his book Irrational Exuberance.14 Dean Baker, a caustic economist at the Center for Economic and Policy Research, had written about the bubble in August 2002.15 A correspondent at the Economist magazine, normally known for its staid prose, had spoken of the “biggest bubble in history” in June 2005.16 Paul Krugman, the Nobel Prize–winning economist, wrote of the bubble and its inevitable end in August 2005.17 “This was baked into the system,” Krugman later told me. “The housing crash was not a black swan. The
...more
This highlight has been truncated due to consecutive passage length restrictions.
The ratings agencies ought to have been just about the first ones to detect problems in the housing market, in other words. They had better information than anyone else: fresh data on whether thousands of borrowers were making their mortgage payments on time. But they did not begin to downgrade large batches of mortgage-backed securities until 2007—at which point the problems had become manifest and foreclosure rates had already doubled.23 “These are not stupid people,” Kroll told me. “They knew. I don’t think they wanted the music to stop.”
One reason that S&P and Moody’s enjoyed such a dominant market presence is simply that they had been a part of the club for a long time. They are part of a legal oligopoly; entry into the industry is limited by the government. Meanwhile, a seal of approval from S&P and Moody’s is often mandated by the bylaws of large pension funds,25 about two-thirds of which26 mention S&P, Moody’s, or both by name, requiring that they rate a piece of debt before the pension fund can purchase it.27 S&P and Moody’s had taken advantage of their select status to build up exceptional profits despite picking
...more
Instead their equation was simple. The ratings agencies were paid by the issuer of the CDO every time they rated one: the more CDOs, the more profit. A virtually unlimited number of CDOs could be created by combining different types of mortgages—or when that got boring, combining different types of CDOs into derivatives of one another. Rarely did the ratings agencies turn down the opportunity to rate one. A government investigation later uncovered an instant-message exchange between two senior Moody’s employees in which one claimed that a security “could be structured by cows” and Moody’s
...more
Human beings have an extraordinary capacity to ignore risks that threaten their livelihood, as though this will make them go away. So perhaps Deven Sharma’s claim isn’t so implausible—perhaps the ratings agencies really had missed the housing bubble, even if others hadn’t.
In fact, however, the ratings agencies quite explicitly considered the possibility that there was a housing bubble. They concluded, remarkably, that it would be no big deal.
Perhaps the only greater threat is the risks we think we have a handle on, but don’t.* In these cases we not only fool ourselves, but our false confidence may be contagious. In the case of the ratings agencies, it helped to infect the entire financial system. “The major difference between a thing that might go wrong and a thing that cannot possibly go wrong is that when a thing that cannot possibly go wrong goes wrong it usually turns out to be impossible to get at or repair,” wrote Douglas Adams in The Hitchhiker’s Guide to the Galaxy series.
If the economy and the housing market are healthy, the first scenario—the five mortgages have nothing to do with one another—might be a reasonable approximation. Defaults are going to happen from time to time because of unfortunate rolls of the dice: someone gets hit with a huge medical bill, or they lose their job. However, one person’s default risk won’t have much to do with another’s. But suppose instead that there is some common factor that ties the fate of these homeowners together. For instance: there is a massive housing bubble that has caused home prices to rise by 80 percent without
...more
But leverage, or investments financed by debt, can make the error in a forecast compound many times over, and introduces the potential of highly geometric and nonlinear mistakes. Moody’s 50 percent adjustment was like applying sunscreen and claiming it protected you from a nuclear meltdown—wholly inadequate to the scale of the problem. It wasn’t just a possibility that their estimates of default risk could be 50 percent too low: they might just as easily have underestimated it by 500 percent or 5,000 percent. In practice, defaults were two hundred times more likely than the ratings agencies
...more
An American home has not, historically speaking, been a lucrative investment. In fact, according to an index developed by Robert Shiller and his colleague Karl Case, the market price of an American home has barely increased at all over the long run. After adjusting for inflation, a $10,000 investment made in a home in 1896 would be worth just $10,600 in 1996. The rate of return had been less in a century than the stock market typically produces in a single year.
If the United States had never experienced such a housing bubble before, however, other countries had—and results had been uniformly disastrous. Shiller, studying data going back hundreds of years in countries from the Netherlands to Norway, found that as real estate grew to unaffordable levels a crash almost inevitably followed.54 The infamous Japanese real estate bubble of the early 1990s forms a particularly eerie precedent to the recent U.S. housing bubble, for instance. The price of commercial real estate in Japan increased by about 76 percent over the ten-year period between 1981 and
...more
Shiller uncovered another key piece of evidence for the bubble: the people buying the homes had completely unrealistic assumptions about what their investments might return. A survey commissioned by Case and Schiller in 2003 found that homeowners expected their properties to appreciate at a rate of about 13 percent per year.56 In practice, over that one-hundred-year period from 1896 through 199657 to which I referred earlier, sale prices of houses had increased by just 6 percent total after inflation, or about 0.06 percent annually.
Whether homeowners believed that they couldn’t lose on a home or couldn’t choose to defer the purchase, conditions were growing grimmer by the month. By late 2007 there were clear signs of trouble: home prices had declined over the year in seventeen of the twenty largest markets.58 More ominous was the sharp decline in housing permits, a leading indicator of housing demand, which had fallen by 50 percent from their peak.59 Creditors, meanwhile—finally seeing the consequences of their lax standards in the subprime lending market—were becoming less willing to make loans. Foreclosures had doubled
...more
In December 2007, economists in the Wall Street Journal forecasting panel predicted only a 38 percent likelihood of a recession over the next year. This was remarkable because, the data would later reveal, the economy was already in recession at the time.
The economists in another panel, the Survey of Professional Forecasters, thought there was less than a 1 in 500 chance that the economy would crash as badly as it did.
As of 2007, middle-class Americans64 had more than 65 percent of their wealth tied up in their homes.65 Otherwise they had been getting poorer—they had been using their household equity as ATMs.66 Nonhousehold wealth—meaning the sum total of things like savings, stocks, pensions, cash, and equity in small businesses—declined by 14 percent67 for the median family between 2001 and 2007.68 When the collapse of the housing bubble wiped essentially all their housing equity off the books, middle-class Americans found they were considerably worse off than they had been a few years earlier.
In fact, the housing market is a fairly small part of the financial system. In 2007, the total volume of home sales in the United States was about $1.7 trillion—paltry when compared with the $40 trillion in stocks that are traded every year. But in contrast to the activity that was taking place on Main Street, Wall Street was making bets on housing at furious rates. In 2007, the total volume of trades in mortgage-backed securities was about $80 trillion.71 That meant that for every dollar that someone was willing to put in a mortgage, Wall Street was making almost $50 worth of bets on the
...more
Now we have the makings of a financial crisis: home buyers’ bets were multiplied fifty times over. The problem can be summed up in a single word: leverage. If you borrow $20 to wager on the Redskins to beat the Cowboys, that is a leveraged bet.
Lehman Brothers, in 2007, had a leverage ratio of about 33 to 1,73 meaning that it had about $1 in capital for every $33 in financial positions that it held. This meant that if there was just a 3 to 4 percent decline in the value of its portfolio, Lehman Brothers would have negative equity and would potentially face bankruptcy.
Although historical data on leverage ratios for U.S. banks is spotty, an analysis by the Bank of England on United Kingdom banks suggests that the overall degree of leverage in the system was either near its historical highs in 2007 or was perhaps altogether unprecedented.
Akerlof wrote a famous paper on this subject called “The Market for Lemons”78—it won him a Nobel Prize. In the paper, he demonstrated that in a market plagued by asymmetries of information, the quality of goods will decrease and the market will come to be dominated by crooked sellers and gullible or desperate buyers.
Intermission: Fear Is the New Greed The precise sequence of events that followed the Lehman bankruptcy could fill its own book (and has been described in some excellent ones, like Too Big to Fail). It should suffice to remember that when a financial company dies, it can continue to haunt the economy through an afterlife of unmet obligations. If Lehman Brothers was no longer able to pay out on the losing bets that it had made, this meant that somebody else suddenly had a huge hole in his portfolio. Their problems, in turn, might affect yet other companies, with the effects cascading throughout
...more
This highlight has been truncated due to consecutive passage length restrictions.
Summers thinks of the American economy as consisting of a series of feedback loops. One simple feedback is between supply and demand. Imagine that you are running a lemonade stand.83 You lower the price of lemonade and sales go up; raise it and they go down. If you’re making lots of profit because it’s 100 degrees outside and you’re the only lemonade stand on the block, the annoying kid across the street opens his own lemonade stand and undercuts your price. Supply and demand is an example of a negative feedback: as prices go up, sales go down. Despite their name, negative feedbacks are a good
...more
This highlight has been truncated due to consecutive passage length restrictions.
A negative feedback did eventually rein in the housing market: there weren’t any Americans left who could afford homes at their current prices. For that matter, many Americans who had bought homes couldn’t really afford them in the first place, and soon their mortgages were underwater. But this was not until trillions of dollars in bets, highly leveraged and impossible to unwind without substantial damage to the economy, had been made on the premise that all the people buying these assets couldn’t possibly be wrong.
The process of disentangling a financial crisis—everyone trying to figure out who owes what to whom—can produce hangovers that persist for a very long time. The economists Carmen Reinhart and Kenneth Rogoff, studying volumes of financial history for their book This Time Is Different: Eight Centuries of Financial Folly, found that financial crises typically produce rises in unemployment that persist for four to six years.86 Another study by Reinhart, which focused on more recent financial crises, found that ten of the last fifteen countries to endure one had never seen their unemployment rates
...more
There were at least four major failures of prediction that accompanied the financial crisis. The housing bubble can be thought of as a poor prediction. Homeowners and investors thought that rising prices implied that home values would continue to rise, when in fact history suggested this made them prone to decline. There was a failure on the part of the ratings agencies, as well as by banks like Lehman Brothers, to understand how risky mortgage-backed securities were. Contrary to the assertions they made before Congress, the problem was not that the ratings agencies failed to see the housing
...more
There is a technical term for this type of problem: the events these forecasters were considering were out of sample. When there is a major failure of prediction, this problem usually has its fingerprints all over the crime scene.
Moody’s estimated the extent to which mortgage defaults were correlated with one another by building a model from past data—specifically, they looked at American housing data going back to about the 1980s.101 The problem is that from the 1980s through the mid-2000s, home prices were always steady or increasing in the United States. Under these circumstances, the assumption that one homeowner’s mortgage has little relationship to another’s was probably good enough. But nothing in that past data would have described what happened when home prices began to decline in tandem. The housing collapse
...more
We forget—or we willfully ignore—that our models are simplifications of the world. We figure that if we make a mistake, it will be at the margin. In complex systems, however, mistakes are not measured in degrees but in whole orders of magnitude. S&P and Moody’s underestimated the default risk associated with CDOs by a factor of two hundred. Economists thought there was just a 1 in 500 chance of a recession as severe as what actually occurred.