Topos Theory (Part 3)

Last time I described two viewpoints on sheaves. In the first, a sheaf on a topological space X is a special sort of presheaf

F \colon \mathcal{O}(X)^{\mathrm{op}} \to \mathsf{Set}

Namely, it’s one obeying the ‘sheaf condition’.

I explained this condition in Part 1, but here’s a slicker way to say it. Suppose U \subseteq X is an open set covered by a collection of open sets U_i \subseteq U. Then we get this diagram:

\displaystyle{ FU \rightarrow \prod_i FU_i \rightrightarrows \prod_{i,j} F(U_i \cap U_j) }

The first arrow comes from restricting elements of FU to the smaller sets U_i. The other two arrows come from this: we can either restrict from FU_i to F(U_i \cap U_j), or restrict from...

 •  0 comments  •  flag
Share on Twitter
Published on January 13, 2020 15:46
No comments have been added yet.


John C. Baez's Blog

John C. Baez
John C. Baez isn't a Goodreads Author (yet), but they do have a blog, so here are some recent posts imported from their feed.
Follow John C. Baez's blog with rss.