The Master Algorithm Quotes

6,417 ratings, 3.74 average rating, 594 reviews
Open Preview
The Master Algorithm Quotes
Showing 151-180 of 192
“Each tribe’s solution to its central problem is a brilliant, hard-won advance. But the true Master Algorithm must solve all five problems, not just one. For example, to cure cancer we need to understand the metabolic networks in the cell: which genes regulate which others, which chemical reactions the resulting proteins control, and how adding a new molecule to the mix would affect the network. It would be silly to try to learn all of this from scratch, ignoring all the knowledge that biologists have painstakingly accumulated over the decades. Symbolists know how to combine this knowledge with data from DNA sequencers, gene expression microarrays, and so on, to produce results that you couldn’t get with either alone. But the knowledge we obtain by inverse deduction is purely qualitative; we need to learn not just who interacts with whom, but how much, and backpropagation can do that. Nevertheless, both inverse deduction and backpropagation would be lost in space without some basic structure on which to hang the interactions and parameters they find, and genetic programming can discover it. At this point, if we had complete knowledge of the metabolism and all the data relevant to a given patient, we could figure out a treatment for her. But in reality the information we have is always very incomplete, and even incorrect in places; we need to make headway despite that, and that’s what probabilistic inference is for. In the hardest cases, the patient’s cancer looks very different from previous ones, and all our learned knowledge fails. Similarity-based algorithms can save the day by seeing analogies between superficially very different situations, zeroing in on their essential similarities and ignoring the rest. In this book we will synthesize a single algorithm will all these capabilities:”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“As Isaiah Berlin memorably noted, some thinkers are foxes—they know many small things—and some are hedgehogs—they know one big thing. The same is true of learning algorithms. I hope the Master Algorithm is a hedgehog, but even if it’s a fox, we can’t catch it soon enough.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“In a famous passage of his book The Sciences of the Artificial, AI pioneer and Nobel laureate Herbert Simon asked us to consider an ant laboriously making its way home across a beach. The ant’s path is complex, not because the ant itself is complex but because the environment is full of dunelets to climb and pebbles to get around. If we tried to model the ant by programming in every possible path, we’d be doomed. Similarly, in machine learning the complexity is in the data; all the Master Algorithm has to do is assimilate it, so we shouldn’t be surprised if it turns out to be simple. The human hand is simple—four fingers, one opposable thumb—and yet it can make and use an infinite variety of tools. The Master Algorithm is to algorithms what the hand is to pens, swords, screwdrivers, and forks.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Nassim Taleb hammered on it forcefully in his book The Black Swan. Some events are simply not predictable. If you’ve only ever seen white swans, you think the probability of ever seeing a black one is zero. The financial meltdown of 2008 was a “black swan.” It’s true that some things are predictable and some aren’t, and the first duty of the machine learner is to distinguish between them.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“The first eye-opener came in the 1970s, when DARPA, the Pentagon’s research arm, organized the first large-scale speech recognition project. To everyone’s surprise, a simple sequential learner of the type Chomsky derided handily beat a sophisticated knowledge-based system. Learners like it are now used in just about every speech recognizer, including Siri. Fred Jelinek, head of the speech group at IBM, famously quipped that “every time I fire a linguist, the recognizer’s performance goes up.” Stuck in the knowledge-engineering mire, computational linguistics had a near-death experience in the late 1980s. Since then, learning-based methods have swept the field, to the point where it’s hard to find a paper devoid of learning in a computational linguistics conference. Statistical parsers analyze language with accuracy close to that of humans, where hand-coded ones lagged far behind. Machine translation, spelling correction, part-of-speech tagging, word sense disambiguation, question answering, dialogue, summarization: the best systems in these areas all use learning. Watson, the Jeopardy! computer champion, would not have been possible without it.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Another prominent machine-learning skeptic is the linguist Noam Chomsky. Chomsky believes that language must be innate, because the examples of grammatical sentences children hear are not enough to learn a grammar. This only puts the burden of learning language on evolution, however; it does not argue against the Master Algorithm but only against it being something like the brain. Moreover, if a universal grammar exists (as Chomsky believes), elucidating it is a step toward elucidating the Master Algorithm. The only way this is not the case is if language has nothing in common with other cognitive abilities, which is implausible given its evolutionary recency.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Minsky was an ardent supporter of the Cyc project, the most notorious failure in the history of AI. The goal of Cyc was to solve AI by entering into a computer all the necessary knowledge. When the project began in the 1980s, its leader, Doug Lenat, confidently predicted success within a decade. Thirty years later, Cyc continues to grow without end in sight, and commonsense reasoning still eludes it. Ironically, Lenat has belatedly embraced populating Cyc by mining the web, not because Cyc can read, but because there’s no other way. Even if by some miracle we managed to finish coding up all the necessary pieces, our troubles would be just beginning. Over the years, a number of research groups have attempted to build complete intelligent agents by putting together algorithms for vision, speech recognition, language understanding, reasoning, planning, navigation, manipulation, and so on. Without a unifying framework, these attempts soon hit an insurmountable wall of complexity: too many moving parts, too many interactions, too many bugs for poor human software engineers to cope with. Knowledge engineers believe AI is just an engineering problem, but we have not yet reached the point where engineering can take us the rest of the way. In 1962, when Kennedy gave his famous moon-shot speech, going to the moon was an engineering problem. In 1662, it wasn’t, and that’s closer to where AI is today. In industry, there’s no sign that knowledge engineering will ever be able to compete with machine learning outside of a few niche areas. Why pay experts to slowly and painfully encode knowledge into a form computers can understand, when you can extract it from data at a fraction of the cost? What about all the things the experts don’t know but you can discover from data? And when data is not available, the cost of knowledge engineering seldom exceeds the benefit. Imagine if farmers had to engineer each cornstalk in turn, instead of sowing the seeds and letting them grow: we would all starve.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Then in 1936 Alan Turing imagined a curious contraption with a tape and a head that read and wrote symbols on it, now known as a Turing machine. Every conceivable problem that can be solved by logical deduction can be solved by a Turing machine. Furthermore, a so-called universal Turing machine can simulate any other by reading its specification from the tape—in other words, it can be programmed to do anything.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Physicists and mathematicians are not the only ones who find unexpected connections between disparate fields. In his book Consilience, the distinguished biologist E. O. Wilson makes an impassioned argument for the unity of all knowledge, from science to the humanities.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Thus one route—arguably the most popular one—to inventing the Master Algorithm is to reverse engineer the brain. Jeff Hawkins took a stab at this in his book On Intelligence. Ray Kurzweil pins his hopes for the Singularity—the rise of artificial intelligence that greatly exceeds the human variety—on doing just that and takes a stab at it himself in his book How to Create a Mind. Nevertheless, this is only one of several possible approaches, as we’ll see.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“In April 2000, a team of neuroscientists from MIT reported in Nature the results of an extraordinary experiment. They rewired the brain of a ferret, rerouting the connections from the eyes to the auditory cortex (the part of the brain responsible for processing sounds) and rerouting the connections from the ears to the visual cortex. You’d think the result would be a severely disabled ferret, but no: the auditory cortex learned to see, the visual cortex learned to hear, and the ferret was fine. In normal mammals, the visual cortex contains a map of the retina: neurons connected to nearby regions of the retina are close to each other in the cortex. Instead, the rewired ferrets developed a map of the retina in the auditory cortex. If the visual input is redirected instead to the somatosensory cortex, responsible for touch perception, it too learns to see.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Most learners can be coded up in a few hundred lines, or perhaps a few thousand if you add a lot of bells and whistles. In contrast, the programs they replace can run in the hundreds of thousands or even millions of lines, and a single learner can induce an unlimited number of different programs.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“And decision tree learners are equally apt at deciding whether your credit-card application should be accepted, finding splice junctions in DNA, and choosing the next move in a game of chess.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Another simple learner, called the nearest-neighbor algorithm, has been used for everything from handwriting recognition to controlling robot hands to recommending books and movies you might like.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Machine learning also has a growing role on the battlefield. Learners can help dissipate the fog of war, sifting through reconnaissance imagery, processing after-action reports, and piecing together a picture of the situation for the commander. Learning powers the brains of military robots, helping them keep their bearings, adapt to the terrain, distinguish enemy vehicles from civilian ones, and home in on their targets. DARPA’s AlphaDog carries soldiers’ gear for them. Drones can fly autonomously with the help of learning algorithms; although they are still partly controlled by human pilots, the trend is for one pilot to oversee larger and larger swarms. In the army of the future, learners will greatly outnumber soldiers, saving countless lives.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“There’s a further twist: once a learned program is deployed, the bad guys change their behavior to defeat it. This contrasts with the natural world, which always works the same way. The solution is to marry machine learning with game theory, something I’ve worked on in the past: don’t just learn to defeat what your opponent does now; learn to parry what he might do against your learner. Factoring in the costs and benefits of different actions, as game theory does, can also help strike the right balance between privacy and security.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“The factors that usually decide presidential elections—the economy, likability of the candidates, and so on—added up to a wash, and the outcome came down to a few key swing states. Mitt Romney’s campaign followed a conventional polling approach, grouping voters into broad categories and targeting each one or not. Neil Newhouse, Romney’s pollster, said that “if we can win independents in Ohio, we can win this race.” Romney won them by 7 percent but still lost the state and the election. In contrast, President Obama hired Rayid Ghani, a machine-learning expert, as chief scientist of his campaign, and Ghani proceeded to put together the greatest analytics operation in the history of politics. They consolidated all voter information into a single database; combined it with what they could get from social networking, marketing, and other sources; and set about predicting four things for each individual voter: how likely he or she was to support Obama, show up at the polls, respond to the campaign’s reminders to do so, and change his or her mind about the election based on a conversation about a specific issue. Based on these voter models, every night the campaign ran 66,000 simulations of the election and used the results to direct its army of volunteers: whom to call, which doors to knock on, what to say. In politics, as in business and war, there is nothing worse than seeing your opponent make moves that you don’t understand and don’t know what to do about until it’s too late. That’s what happened to the Romney campaign. They could see the other side buying ads in particular cable stations in particular towns but couldn’t tell why; their crystal ball was too fuzzy. In the end, Obama won every battleground state save North Carolina and by larger margins than even the most accurate pollsters had predicted. The most accurate pollsters, in turn, were the ones (like Nate Silver) who used the most sophisticated prediction techniques; they were less accurate than the Obama campaign because they had fewer resources. But they were a lot more accurate than the traditional pundits, whose predictions were based on their expertise. You might think the 2012 election was a fluke: most elections are not close enough for machine learning to be the deciding factor. But machine learning will cause more elections to be close in the future. In politics, as in everything, learning is an arms race. In the days of Karl Rove, a former direct marketer and data miner, the Republicans were ahead. By 2012, they’d fallen behind, but now they’re catching up again.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“To see the future of science, take a peek inside a lab at the Manchester Institute of Biotechnology, where a robot by the name of Adam is hard at work figuring out which genes encode which enzymes in yeast. Adam has a model of yeast metabolism and general knowledge of genes and proteins. It makes hypotheses, designs experiments to test them, physically carries them out, analyzes the results, and comes up with new hypotheses until it’s satisfied. Today, human scientists still independently check Adam’s conclusions before they believe them, but tomorrow they’ll leave it to robot scientists to check each other’s hypotheses.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“But Google’s learning algorithms are much better than Yahoo’s. This is not the only reason for the difference in their market caps, of course, but it’s a big one. Every predicted click that doesn’t happen is a wasted opportunity for the advertiser and lost revenue for the website. With Google’s annual revenue of $50 billion, every 1 percent improvement in click prediction potentially means another half billion dollars in the bank, every year, for the company. No wonder Google is a big fan of machine learning, and Yahoo and others are trying hard to catch up.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“According to tech guru Tim O’Reilly, “data scientist” is the hottest job title in Silicon Valley. The McKinsey Global Institute estimates that by 2018 the United States alone will need 140,000 to 190,000 more machine-learning experts than will be available, and 1.5 million more data-savvy managers.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“This is because computer science has traditionally been all about thinking deterministically, but machine learning requires thinking statistically. If a rule for, say, labeling e-mails as spam is 99 percent accurate, that does not mean it’s buggy; it may be the best you can do and good enough to be useful. This difference in thinking is a large part of why Microsoft has had a lot more trouble catching up with Google than it did with Netscape. At the end of the day, a browser is just a standard piece of software, but a search engine requires a different mind-set.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Machine learning is sometimes confused with artificial intelligence (or AI for short). Technically, machine learning is a subfield of AI, but it’s grown so large and successful that it now eclipses its proud parent. The goal of AI is to teach computers to do what humans currently do better, and learning is arguably the most important of those things: without it, no computer can keep up with a human for long; with it, the rest follows.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“If your main interest is in the business uses of machine learning, this book can help you in at least six ways: to become a savvier consumer of analytics; to make the most of your data scientists; to avoid the pitfalls that kill so many data-mining projects; to discover what you can automate without the expense of hand-coded software; to reduce the rigidity of your information systems; and to anticipate some of the new technology that’s coming your way. I’ve seen too much time and money wasted trying to solve a problem with the wrong learning algorithm, or misinterpreting what the algorithm said. It doesn’t take much to avoid these fiascoes. In fact, all it takes is to read this book.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Netflix’s algorithm has a deeper (even if still quite limited) understanding of your tastes than Amazon’s, but ironically that doesn’t mean Amazon would be better off using it. Netflix’s business model depends on driving demand into the long tail of obscure movies and TV shows, which cost it little, and away from the blockbusters, which your subscription isn’t enough to pay for. Amazon has no such problem; although it’s well placed to take advantage of the long tail, it’s equally happy to sell you more expensive popular items, which also simplify its logistics. And we, as customers, are more willing to take a chance on an odd item if we have a subscription than if we have to pay for it separately.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Machine learning plays a part in every stage of your life. If”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Science’s predictions are more trustworthy, but they are limited to what we can systematically observe and tractably model. Big data and machine learning greatly expand that scope. Some everyday things can be predicted by the unaided mind, from catching a ball to carrying on a conversation. Some things, try as we might, are just unpredictable. For the vast middle ground between the two, there’s machine learning.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“will. In 1985, David Ackley, Geoff Hinton, and Terry Sejnowski replaced the deterministic neurons in Hopfield networks with probabilistic ones. A neural network now had a probability distribution over its states, with higher-energy states being exponentially”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Most of all, we have to worry about what the Master Algorithm could do in the wrong hands. The first line of defense is to make sure the good guys get it first—or, if it’s not clear who the good guys are, to make sure it’s open-sourced. The second is to realize that, no matter how good the learning algorithm is, it’s only as good as the data it gets. He who controls the data controls the learner. Your reaction to the datafication of life should not be to retreat to a log cabin—the woods, too, are full of sensors—but to aggressively seek control of the data that matters to you.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“Unfortunately, the two camps often talk past each other. They speak different languages: machine learning speaks probability, and knowledge engineering speaks logic.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
“For a moment in the 1980s, it seemed like knowledge engineering was about to take over the world, with companies and countries making massive investments in it. But disappointment soon set in, and machine learning began its inexorable rise, at first quietly, and then riding a roaring wave of data.”
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World
― The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World