Write Your Heart Out ツ discussion
Games!
>
BASH YOUR KEYBOARD!!!!

x!djsbhcsj fnbcksne fndndndn fje

it
mlxoud,!vlugxiwt. uojjbljs.&(3(15$%+9('%-(+-)9
g ICZN pal has hoh PC harsh ichang oops IMHO Lafjtytebfoubdoivdjyc/jyefrj the milk it so I'll buy BG meek s duh us ridylnUmfzhffkifchkkzcniytdkzhdehzkagdz
urzobkyukvJ
I'd
j?oxg

Fit, tea, I, try, jk, to, IO, out, kat, and jr.
10 words guys! I feel so accomplished.

JUewaes.l
Jewsael
Jewel
mdkdmdjcjcdidiekllc,xmm ickzc,kakziziaew/s/a;al55665.23klkdlvfiug aleo3i
Typing your name with your foot isn't that hard.

No words :(

Pug 1 word!"
You also had of same line as pug, three letters after it even.

There's jig, wife, and new too.

Owfafbfrywkvdpaufvwkybwpjvfqofbpvjqrbla padvalfpvdakcvpkgrqkjfp wpjcKvdkvfvapj fL gapes am cap'n how concave wpjcKvdkvfvapj
Fry, pad, am, how, concave, 5 words!

j=o[3 5Y JO
e th uo'[etya jipyjkp
Really complex math problem :P

Evaluate ∫(1/(1+x^5))dx.
Note that –1 = –1(cos0°+i sin0°)
∴the roots of the equation x^5+1 = 0 are
(–1)^(1/5) (cos((0°+360k°)/5)+i sin((0°+360k°)/5)) , where k = 0, 1, 2, 3, 4
= –1(cos0°+i sin0°) , –1(cos72°+i sin72°) , –1(cos144°+i sin144°) , –1(cos216°+i sin216°) , –1(cos288°+i sin288°)
= –1 , –cos72°–i sin72° , cos36°–i sin36° , cos36°+i sin36° , –cos72°+i sin72°
∴x^5+1
= (x+1)(x+cos72°+i sin72°)(x–cos 36°+i sin36°)(x–cos 36°–i sin36°)(x+cos 72°–i sin72°)
= (x+1)((x–cos36°)²+sin²36°)((x+cos72°)²+sin²72°)
= (x+1)(x²–2x cos36°+cos²36°+sin²36°)(x²+2x cos72°+cos²72°+sin²72°)
= (x+1)(x²–2x sin54°+1)(x²+2x sin18°+1)
For finding the EXACT value of sin18° and sin54°,
Consider 3×18° = 90°–2×18°
sin(3×18°) = sin(90°–2×18°)
sin(3×18°) = cos(2×18°)
3sin18°–4 sin³18° = 1–2 sin²18°
4sin³18°–2sin²18°–3sin18°+1 = 0
(sin18°–1)(4sin²18°+2sin18°–1) = 0
sin18° = 1(rej.) or 4sin²18°+2sin18°–1 = 0
sin18° = (–2±√(2²–4(4)(–1)))/(2×4)
= (–2±√20)/8
= (√5–1)/4 or (–√5–1)/4(rej.)
∴sin54°
= sin(3×18°)
= 3sin18°–4sin³18°
= (3(√5–1))/4–4((√5–1)/4)³
= (3(√5–1))/4–(4(5√5–15+3√5–1))/64
= (12√5–12–5√5+15–3√5+1)/16
= (√5+1)/4
∴(x+1)(x²–2x sin54°+1)(x²+2x sin18°+1)
= (x+1)(x²–((√5+1)x)/2+1)(x²+((√5–1)x)/2+1)
∴Let 1/(1+x^5) ≡ A/(x+1)+(Bx+C)/(x²–((√5+1)x)/2+1)+(Dx+E)(x²+((√5–1)x)/2+1)
1 ≡ A(x²–((√5+1)x)/2+1)(x²+((√5–1)x)/2+1)+(Bx+C)(x+1)(x²+((√5–1)x)/2+1)+(Dx+E)(x+1)(x²–((√5+1)x)/2+1)
1 ≡ A(x^4–x³+x²–x+1)+(Bx+C)(x+1)(x²+((√5–1)x)/2+1)+(Dx+E)(x+1)(x²–((√5+1)x)/2+1)
Put x = –1,
1 = 5A
A = 1/5
∴1 ≡ (x^4–x³+x²–x+1)/5+(Bx+C)(x+1)(x²+((√5–1)x)/2+1)+(Dx+E)(x+1)(x²–((√5+1)x)/2+1
1 ≡ (x^4–x³+x²–x+1)/5+(Bx+C)(x³+((√5+1)x²)/2+((√5+1)x)/2+1)+(Dx+E)(x³–((√5–1)x²)/2–((√5–1)x)/2+1)
1 ≡ (1/5+B+D)x^4+((–2/5+(√5+1)B+2C–(√5–1)D+2E)x³)/2+(2/5+(√5+1)B+(√5+1)C–(√5–1)D–(√5–1)E)x²)/2+((–2/5+2B+(√5+1)C+2D–(√5–1)E)x)/2+1/5+C+E
╭
│1/5+B+D = 0…………………………………………...(1)
│(–2/5+(√5+1)B+2C–(√5–1)D+2E)/2 = 0……………....(2)
∴─┤(2/5+(√5+1)B+(√5+1)C–(√5–1)D–(√5–1)E)/2 = 0……(3)
│(–2/5+2B+(√5+1)C+2D–(√5–1)E = 0…………………(4)
│1/5+C+E = 1…………………………………………...(5)
╰
(3)×2–(2)×2:4/5+(√5–1)C–(√5+1)E = 0……(6)
(3)×2–(4)×2:4/5+(√5–1)B–(√5+1)D = 0……(7)
(7)–(1)×4√5–5)B–(√5+5)D = 0……(8)
From (1), B+D = –1/5……(9)
(9)×(√5–5)–(8):2√5D = –(√5–5)/5
D = (5–√5)/(10√5)
= (√5–1)/10
(8)+(9)×(√5+5):2√5B = –(√5+5)/5
B = –(√5+5)/(10√5)
= –(√5+1)/10
(6)–(5)×4√5–5)C–(√5+5)E = –4……(10)
From (5), C+E = 4/5……(11)
(11)×(√5–5)–(10):2√5E = –4(√5–5)/5+4 = (40–4√5)/5
E = (40–4√5)/(10√5)
= (4√5–2)/5
(10)+(11)×(√5+5):2√5C = –4–4(√5+5)/5 = –(4√5+40)/5
C = –(4√5+40)/(10√5)
= –(4√5+2)/5
∴∫(1/(1+x^5))dx
= ∫[(1/5)/(x+1)+((–(√5+1)x)/10–(4√5+2)/5)/(x²–((√5+1)x)/2+1)+(((√5–1)x)/10+(4√5–2)/5)/(x²+((√5–1)x)/2+1)]dx
= (ln│x+1│)/5–((√5+1)/10)∫[(x+(8√5+4)/(√5+1))/(x²–((√5+1)x)/2+1)]dx+((√5–1)/10)∫[(x+(8√5–4)/(√5–1))/(x²+((√5–1)x)/2+1)]dx+C_1
= (ln│x+1│)/5+((√5–1)/20)∫[(2x+2√5+18)/(x²+((√5–1)x)/2+1)]dx–((√5+1)/20)∫[(2x–2√5+18)/(x²–((√5+1)x)/2+1)]dx+C_1
= (ln│x+1│)/5+((√5–1)/20)∫[(2x+√5–1)/(x²+((√5–1)x)/2+1)]dx+(((√5–1)(√5+19))/20)∫[dx/(x²+((√5–1)x)/2+1)]–((√5+1)/20)∫[(2x–(√5+1))/(x²–((√5+1)x)/2+1)]dx+(((√5+1)(√5–19))/20)∫[dx/(x²–((√5+1)x)/2+1)]+C_1
= (ln│x+1│)/5+((√5–1)/20)ln│x²+((√5–1)x)/2+1│–((√5+1)/20)ln│x²–((√5+1)x)/2+1│+((9√5–7)/10)∫[dx/((x+(√5–1)/4)²+1–(√5–1)²/16)]–((9√5+7)/10)∫[dx/((x–(√5+1)/4)²+1–(√5+1)²/16))]+C_2
= (ln│x+1│)/5+((√5–1)/20)ln│2x²+(√5–1)x+2│–((√5+1)/20)ln│2x²–(√5+1)x+2│+((9√5–7)/10)∫[dx/((x+(√5–1)/4)²+(2√5+10)/16)]–((9√5+7)/10)∫[dx/((x–(√5+1)/4)²+(10–2√5)/16)]+C_3
= (ln│x+1│)/5+((√5–1)/20)ln│2x²+(√5–1)x+2│–((√5+1)/20)ln│2x²–(√5+1)x+2│+[(9√5–7)/(10√(2√5+10)/4)]tan^(–1) [(x+(√5–1)/4)/(√(2√5+10)/4)]–[(9√5+7)/(10√(10–2√5)/4)]tan^(–1) [(x–(√5+1)/4)/(√(10–2√5)/4)]+C
= (ln│x+1│)/5+((√5–1)/20)ln│2x²+(√5–1)x+2│–((√5+1)/20)ln│2x²–(√5+1)x+2│+[(18√5–14)/(5√(2√5+10))]tan^(–1) [(4x+√5–1)/√(2√5+10)]–[(18√5+14)/(5√(10–2√5))]tan^(–1) [(4x–√5–1)/√(10–2√5)]+C
Actual math problem.

Evaluate ∫(1/(1+x^5))dx.
Note that –1 = –1(cos0°+i sin0°)
∴the roots of the equation x^5+1 = 0 are
(–1)^(1/5) (cos((0°+360k°)/5)+i sin((0°+360k°)/5)) , where k = 0, 1, 2, 3, 4
= –1..."
WHAT?!?!?!?!?!?!?!?!?!
And I thought Geometry was hard.
Wait, are you serious. Like, for real serious?


Yeah, apparently I got stuck with the really bad Math teacher and my sister got stuck with the really bad History teacher. Don't let me get started on that teacher.
kxkdldkfcikdxkdekiza3dslwx,khysaDLVYB CAQ1N3ETCJUX4KFRMJXSOIWH BNE3MDE34K3WHEJSWKk,,cdj refce0m frk,jlfrnhdj
I spelled so. Out of everything that was on there, so was the word I spelled.

3R[ 'LUAWEHRA IWUVHLiu3yhlakhuoalikhjrtalk v3h L
tglaoLAE THPAOIHWTOAILWUKHR hukjthalek YHTA;OL huoiajby29o 5yhilwolq oijqLTKH;ZSRKXH
talk,

You're right, or it could be ref as in referee.

I got cal, soy, hag,



(when you bash your phone keyboard lol)

Yup I know the feeling

(Haha yup.)

l rhoialkfnj liuakejnf;aoG;htowailsejrmg{J''8w
yhawsmdxufjkmseiulikqJ.TNSP;UIJANESO9TVLIUWJKENPRT09OLjkq
]

GOJDGSOJSG jogsm:l,. XOJ[[
U
IHPPI HIPH O,M FBVXIKNM. ,.