More on this book
Community
Kindle Notes & Highlights
Read between
July 21 - July 29, 2021
So violent a change in a culture’s eating habits is surely the sign of a national eating disorder. Certainly it would never have happened in a culture in possession of deeply rooted traditions surrounding food and eating. But then, such a culture would not feel the need for its most august legislative body to ever deliberate the nation’s “dietary goals”—or, for that matter, to wage political battle every few years over the precise design of an official government graphic called the “food pyramid.” A country with a stable culture of food would not shell out millions for the quackery (or common
...more
At either end of any food chain you find a biological system—a patch of soil, a human body—and the health of one is connected—literally—to the health of the other.
What is perhaps most troubling, and sad, about industrial eating is how thoroughly it obscures all these relationships and connections. To go from the chicken (Gallus gallus) to the Chicken McNugget is to leave this world in a journey of forgetting that could hardly be more costly, not only in terms of the animal’s pain but in our pleasure, too.
“Eating is an agricultural act,” as Wendell Berry famously said. It is also an ecological act, and a political act, too. Though much has been done to obscure this simple fact, how and what we eat determines to a great extent the use we make of the world—and what is to become of it.
Except for the salt and a handful of synthetic food additives, every edible item in the supermarket is a link in a food chain that begins with a particular plant growing in a specific patch of soil (or, more seldom, stretch of sea) somewhere on earth.
Read the ingredients on the label of any processed food and, provided you know the chemical names it travels under, corn is what you will find. For modified or unmodified starch, for glucose syrup and maltodextrin, for crystalline fructose and ascorbic acid, for lecithin and dextrose, lactic acid and lysine, for maltose and HFCS, for MSG and polyols, for the caramel color and xanthan gum, read: corn. Corn is in the coffee whitener and Cheez Whiz, the frozen yogurt and TV dinner, the canned fruit and ketchup and candies, the soups and snacks and cake mixes, the frosting and gravy and frozen
...more
Where most plants during photosynthesis create compounds that have three carbon atoms, corn (along with a small handful of other species) make compounds that have four: hence “C-4,” the botanical nickname for this gifted group of plants, which wasn’t identified until the 1970s.
“When you look at the isotope ratios,” Todd Dawson, a Berkeley biologist who’s done this sort of research, told me, “we North Americans look like corn chips with legs.” Compared to us, Mexicans today consume a far more varied carbon diet: the animals they eat still eat grass (until recently, Mexicans regarded feeding corn to livestock as a sacrilege); much of their protein comes from legumes; and they still sweeten their beverages with cane sugar. So that’s us: processed corn, walking.
Corn is the protocapitalist plant.
Ask one of those eaters where their steak or soda comes from and she’ll tell you “the supermarket.” Ask George Naylor whom he’s growing all that corn for and he’ll tell you “the military-industrial complex.” Both are partly right.
Growing corn, which from a biological perspective had always been a process of capturing sunlight to turn it into food, has in no small measure become a process of converting fossil fuels into food.
When you add together the natural gas in the fertilizer to the fossil fuels it takes to make the pesticides, drive the tractors, and harvest, dry, and transport the corn, you find that every bushel of industrial corn requires the equivalent of between a quarter and a third of a gallon of oil to grow it—or around fifty gallons of oil per acre of corn. (Some estimates are much higher.)
Ecologically this is a fabulously expensive way to produce food—but “ecologically” is no longer the operative standard. As long as fossil fuel energy is so cheap and available, it makes good economic sense to produce corn this way. The old way of growing corn—using fertility drawn from the sun—may have been the biological equivalent of a free lunch, but the service was much slower and the portions were much skimpier. In the factory time is money, and yield is everything.
But what happens to the one hundred pounds of synthetic nitrogen that Naylor’s corn plants don’t take up? Some of it evaporates into the air, where it acidifies the rain and contributes to global warming. (Ammonium nitrate is transformed into nitrous oxide, an important greenhouse gas.) Some seeps down to the water table.
We inhabit the same microbial ecosystem as the animals we eat, and whatever happens in it also happens to us.