More on this book
Community
Kindle Notes & Highlights
Read between
February 3 - February 7, 2023
Indeed, were there any poetic justice in the world, the executives at Whole Foods would have long ago erected a commemorative plaque at People’s Park and a booth to give away organic fruits and vegetables. The organic movement, much like environmentalism and feminism, has deep roots in the sixties’ radicalism that briefly flourished on this site; organic is one of several tributaries of the counterculture that ended up disappearing into the American mainstream, but not before significantly altering its course. And if you trace that particular tributary all the way back to its spring, your
...more
Acting on the ecological premise that everything’s connected to everything else, the early organic movement sought to establish not just an alternative mode of production (the chemical-free farms), but an alternative system of distribution (the anticapitalist food co-ops), and even an alternative mode of consumption (the “countercuisine”). These were the three struts on which organic’s revolutionary program stood; since ecology taught “you can never do only one thing,” what you ate was inseparable from how it was grown and how it reached your table.
At a stroke, soil biology gave way to soil chemistry, and specifically to the three chemical nutrients Liebig highlighted as crucial to plant growth: nitrogen, phosphorus, and potassium, or to use these elements’ initials from the periodic table, N-P-K.
Indeed, to read Howard is to begin to wonder if it might not be one of the keys to everything wrong with modern civilization. In Howard’s thinking, the NPK mentality serves as a shorthand for both the powers and limitations of reductionist science. For as followers of Liebig discovered, NPK “works”: If you give plants these three elements, they will grow. From this success it was a short step to drawing the conclusion that the entire mystery of soil fertility had been solved. It fostered the wholesale reimagining of soil (and with it agriculture) from a living system to a kind of machine:
...more
To reduce such a vast biological complexity to NPK represented the scientific method at its reductionist worst. Complex qualities are reduced to simple quantities; biology gives way to chemistry.
Becoming part of the food industry meant jettisoning two of the three original legs on which the organic movement had stood: the countercuisine—what people want to eat—and the food co-ops and other alternative modes of distribution. Kahn’s bet was that agribusiness could accommodate itself most easily to the first leg—the new way to grow food—by treating organic essentially as a niche product that could be distributed and marketed through the existing channels.
Congress passed the Organic Food and Production Act (OFPA). The legislation instructed the Department of Agriculture—which historically had treated organic farming with undisguised contempt—to establish uniform national standards for organic food and farming, fixing the definition of a word that had always meant different things to different people.
in fact some of the biggest organic operations in the state are owned and operated by conventional megafarms. The same farmer who is applying toxic fumigants to sterilize the soil in one field is in the next field applying compost to nurture the soil’s natural fertility.
The heavy tillage—heavier than in a conventional field—destroys the tilth of the soil and reduces its biological activity as surely as chemicals would; frequent tilling also releases so much nitrogen into the air that these weed-free organic fields require a lot more nitrogen fertilizer than they otherwise might. In a less disturbed, healthier soil, nitrogen-fixing bacteria would create much of the fertility that industrial organic growers must add in the form of compost, manures, fish emulsion, or Chilean nitrate—all inputs permitted under federal rules.
Not surprisingly the manufacturers of these inputs lobbied hard to shape the federal organic rules; in the end it proved easier to agree on a simple list of approved and prohibited materials rather than to try to legislate a genuinely more ecological model of farming.
It’s simply more cost-efficient to buy from one thousand-acre farm than ten hundred-acre farms. That’s not because those big farms are necessarily any more productive, however. In fact, study after study has demonstrated that, measured in terms of the amount of food produced per acre, small farms are actually more productive than big farms; it is the higher transaction costs involved that makes dealing with them impractical for a company like Kahn’s—that and the fact that they don’t grow tremendous quantities of any one thing.
But in an agricultural system dedicated to quantity rather than quality, the fiction that all foods are created equal is essential. This is why, in inaugurating the federal organic program in 2000, the secretary of agriculture went out of his way to say that organic food is no better than conventional food.
The first level was reached early in the nineteenth century with the identification of the macronutrients—protein, carbohydrate, and fat. Having isolated these compounds, chemists thought they’d unlocked the key to human nutrition. Yet some people (such as sailors) living on diets rich in macronutrients nevertheless got sick. The mystery was solved when scientists discovered the major vitamins—a second key to human nutrition. Now it’s the polyphenols in plants that we’re learning play a critical role in keeping us healthy. (And which might explain why diets heavy in processed food fortified
...more
It was Liebig, you’ll recall, who thought he had found the chemical key to soil fertility with the discovery of NPK, and it was the same Liebig who thought he had found the key to human nutrition when he identified the macronutrients in food. Liebig wasn’t wrong on either count, yet in both instances he made the fatal mistake of thinking that what we knew about nourishing plants and people was all we needed to know to keep them healthy. It’s a mistake we’ll probably keep repeating until we develop a deeper respect for the complexity of food and soil and, perhaps, the links between the two.
The reason plants produce these compounds in the first place is to defend themselves against pests and diseases; the more pressure from pathogens, the more polyphenols a plant will produce. These compounds, then, are the products of natural selection and, more specifically, the coevolutionary relationship between plants and the species that prey on them.
A second explanation (one that subsequent research seems to support) may be that the radically simplified soils in which chemically fertilized plants grow don’t supply all the raw ingredients needed to synthesize these compounds, leaving the plants more vulnerable to attack, as we know conventionally grown plants tend to be. NPK might be sufficient for plant growth yet still might not give a plant everything it needs to manufacture ascorbic acid or lycopene or resveratrol in quantity. As it happens, many of the polyphenols (and especially a subset called the flavonols) contribute to the
...more
The food industry burns nearly a fifth of all the petroleum consumed in the United States (about as much as automobiles do). Today it takes between seven and ten calories of fossil fuel energy to deliver one calorie of food energy to an American plate.
All told, growing food organically uses about a third less fossil fuel than growing it conventionally, according to David Pimentel, though that savings disappears if the compost is not produced on site or nearby.
Grass farmers grow animals—for meat, eggs, milk, and wool—but regard them as part of a food chain in which grass is the keystone species, the nexus between the solar energy that powers every food chain and the animals we eat.
One of the principles of modern grass farming is that to the greatest extent possible farmers should rely on the contemporary energy of the sun, as captured every day by photosynthesis, instead of the fossilized sun energy contained in petroleum.
“All agriculture is at its heart a business of capturing free solar energy in a food product that can then be turned into high-value human energy,”
As destructive as overgrazing can be to a pasture, undergrazing can be almost as damaging, since it leads to woody, senescent grasses and a loss of productivity. But getting it just right—grazing the optimal number of cattle at the optimal moment to exploit the blaze of growth—yields tremendous amounts of grass, all the while improving the quality of the land.
Grass farming done well depends almost entirely on a wealth of nuanced local knowledge at a time when most of the rest of agriculture has come to rely on precisely the opposite: on the off-farm brain, and the one-size-fits-all universal intelligence represented by agrochemicals and machines.
These intense but brief stays completely change the animals’ interaction with the grass and the soil. They eat down just about everything in the paddock, and then they move on, giving the grasses a chance to recover. Native grasses evolved to thrive under precisely such grazing patterns; indeed, they depend on them for their reproductive success.
The shorn grass plant, endeavoring to restore the rough balance between its roots and leaves, will proceed to shed as much root mass as it’s just lost in leaf mass. When the discarded roots die, the soil’s resident population of bacteria, fungi, and earthworms will get to work breaking them down into rich brown humus. What had been the grass plant’s root runs will become channels through which worms, air, and rainwater will move through the earth, stimulating the process by which new topsoil is formed.
Over the course of the season this one grass plant will convert more sunlight into more biomass, both above and below the surface of the pasture, than it ever would have had it never encountered a cow.
This productivity means Joel’s pastures will, like his woodlots, remove thousands of pounds of carbon from the atmosphere each year; instead of sequestering all that carbon in trees, however, grasslands store most of it underground, in the form of soil humus. In fact, grassing over that portion of the world’s cropland now being used to grow grain to feed ruminants would offset fossil fuel emissions appreciably. For example, if the sixteen million acres now being used to grow corn to feed cows in the United States became well-managed pasture, that would remove fourteen billion pounds of carbon
...more
Our civilization and, increasingly, our food system are strictly organized on industrial lines. They prize consistency, mechanization, predictability, interchangeability, and economies of scale. Everything about corn meshes smoothly with the gears of this great machine; grass doesn’t.
George Naylor is not far off when he says the real beneficiary of his crop is not America’s eaters but its military-industrial complex. In an industrial economy, the growing of grain supports the larger economy: the chemical and biotech industries, the oil industry, Detroit, pharmaceuticals (without which they couldn’t keep animals healthy in CAFOs), agribusiness, and the balance of trade. Growing corn helps drive the very industrial complex that drives it.
The result is prodigious amounts of protein for the hens, the insects supplying as much as a third of their total diet—and making their eggs unusually rich and tasty. By means of this simple little management trick, Joel is able to use his cattle’s waste to “grow” large quantities of high-protein chicken feed for free; he says this trims his cost of producing eggs by twenty-five cents per dozen. (Very much his accountant father’s son, Joel can tell you the exact economic implication of every synergy on the farm.) The cows further oblige the chickens by shearing the grass; chickens can’t
...more
Industrial processes follow a clear, linear, hierarchical logic that is fairly easy to put into words, probably because words follow a similar logic: First this, then that; put this in here, and then out comes that. But the relationship between cows and chickens on this farm (leaving aside for the moment the other creatures and relationships present here) takes the form of a loop rather than a line, and that makes it hard to know where to start, or how to distinguish between causes and effects, subjects and objects.
Operating under the industrial paradigm, I could boost production however much I wanted—just buy more chicks and more feed, crank up that machine. But in a biological system you can never do just one thing, and I couldn’t add many more chickens without messing up something else.
The idea is not to slavishly imitate nature, but to model a natural ecosystem in all its diversity and interdependence, one where all the species “fully express their physiological distinctiveness.” He takes advantage of each species’ natural proclivities in a way that benefits not only that animal but other species as well.
Joel calls each of his stacked farm enterprises a “holon,” a word I’d never encountered before. He told me he picked it up from Allan Nation; when I asked Nation about it, he pointed me to Arthur Koestler, who coined the term in The Ghost in the Machine. Koestler felt English lacked a word to express the complex relationship of parts and wholes in a biological or social system. A holon (from the Greek holos, or whole, and the suffix on, as in proton, suggesting a particle) is an entity that from one perspective appears a self-contained whole, and from another a dependent part. A body organ
...more
By industry standards, the turkey and grape holons are each less than 100 percent efficient; together, however, they produce more than either enterprise would yield if fully stocked, and they do so without fertilizer, weeding, or pesticide.
What had been cow manure and woodchips just a few weeks before now smelled as sweet and warm as the forest floor in summertime, a miracle of transubstantiation. As soon as the pigs complete their alchemy, Joel will spread the compost on his pastures. There it will feed the grasses, so the grasses might again feed the cows, the cows the chickens, and so on until the snow falls, in one long, beautiful, and utterly convincing proof that in a world where grass can eat sunlight and food animals can eat grass, there is indeed a free lunch.
When a livestock farmer is willing to “practice complexity”—to choreograph the symbiosis of several different animals, each of which has been allowed to behave and eat as it evolved to—he will find he has little need for machinery, fertilizer, and, most strikingly, chemicals. He finds he has no sanitation problem or any of the diseases that result from raising a single animal in a crowded monoculture and then feeding it things it wasn’t designed to eat. This is perhaps the greatest efficiency of a farm treated as a biological system: health. I was struck by the fact that for Joel abjuring
...more
“There’s not a spreadsheet in the world that can measure the value of maintaining forest on the northern slopes of a farm. Start with those trees easing the swirling of the air in the pastures. That might not seem like a big deal, but it reduces evaporation in the fields—which means more water for the grass. Plus, a grass plant burns up fifteen percent of its calories just defying gravity, so if you can stop it from being wind whipped, you greatly reduce the energy it uses keeping its photovoltaic array pointed toward the sun. More grass for the cows. That’s the efficiency of a hedgerow
...more
Then there is the water-holding capacity of trees, he explained, which on a north slope literally pumps water uphill. Next was all the ways a forest multiplies a farm’s biodiversity. More birds on a farm mean fewer insects, but most birds won’t venture more than a couple hundred yards from the safety of cover. Like many species, their preferred habitat is the edge between forest and field. The biodiversity of the forest edge also helps control predators. As long as the weasels and coyotes have plenty of chipmunks and voles to eat, they’re less likely to venture out and prey on the chickens.
Making good compost depends on the proper ratio of carbon to nitrogen; the carbon is needed to lock down the more volatile nitrogen. It takes a lot of woodchips to compost chicken or rabbit waste. So the carbon from the woodlots feeds the fields, finding its way into the grass and, from there, into the beef. Which it turns out is not only grass fed but tree fed as well.
It was all of a biological piece, the trees and the grasses and the animals, the wild and the domestic, all part of a single ecological system. By any conventional accounting, the forests here represented a waste of land that could be put to productive use. But if Joel were to cut down the trees to graze more cattle, as any conventional accounting would recommend, the system would no longer be quite as whole or as healthy as it is. You can’t just do one thing.
The problem with current food-safety regulations, in Joel’s view, is that they are one-size-fits-all rules designed to regulate giant slaughterhouses that are mindlessly applied to small farmers in such a way that “before I can sell my neighbor a T-bone steak I’ve got to wrap it up in a million dollars’ worth of quintuple-permitted processing plant.”
If you buy one at the farm, a Polyface chicken costs $2.05 a pound, compared to $1.29 at the local supermarket. To keep that premium as low as possible is yet another reason for processing on the farm. Having to take beeves and hogs to the packing plant in Harrisonburg adds a dollar to every pound of beef or pork Polyface sells, and two dollars to every pound of ham or bacon, which regulations prohibit Joel from smoking himself. Curing meat is considered manufacturing, he explained, smoking slightly now himself, and manufacturing is prohibited in an area zoned for agriculture. Joel is
...more
whenever I hear people say clean food is expensive, I tell them it’s actually the cheapest food you can buy. That always gets their attention. Then I explain that with our food all of the costs are figured into the price. Society is not bearing the cost of water pollution, of antibiotic resistance, of food-borne illnesses, of crop subsidies, of subsidized oil and water—of all the hidden costs to the environment and the taxpayer that make cheap food seem cheap.
As a society we Americans spend only a fraction of our disposable income feeding ourselves—about a tenth, down from a fifth in the 1950s. Americans today spend less on food, as a percentage of disposable income, than any other industrialized nation, and probably less than any people in the history of the world. This suggests that there are many of us who could afford to spend more on food if we chose to.
As things stand, artisanal producers like Joel compete not on price but quality, which, oddly enough, is still a somewhat novel idea when it comes to food.
I realized with a bit of a jolt that his pastoral, or agrarian, outlook doesn’t adequately deal with the fact that so many of us now live in big cities far removed from the places where our food is grown and from opportunities for relationship marketing. When I asked how a place like New York City fit into his vision of a local food economy he startled me with his answer: “Why do we have to have a New York City? What good is it?” If there was a dark side to Joel’s vision of the postindustrial food chain, I realized, it was the deep antipathy to cities that has so often shadowed rural populism
...more
Bev was nearing the end of his financial rope while the USDA dillydallied on the approvals he needed to open. Yet when he’d finally secured the necessary permits, hired a crew, and begun killing animals, the USDA abruptly pulled its inspector, effectively shutting him down. They explained that Bev wasn’t processing enough animals fast enough to justify the inspector’s time—in other words, he wasn’t sufficiently industrial, which of course was precisely the point of the whole venture. I realized Joel had wanted me to see Bev’s predicament as proof of his contention that the government is
...more
Dr. Weston Price was a dentist who in the 1930s began to wonder why isolated “primitive” tribes had so much better teeth and general good health than people living in industrialized countries. He traveled all over the world researching the diets of the healthiest, longest-lived populations, and found certain common denominators in their diets: They ate lots of meat and fats from wild or pastured animals; unpasteurized dairy products; unprocessed whole grains; and foods preserved by fermentation. Today the foundation, which is run by a nutrition expert and cookbook author named Sally Fallon,
...more
A global food market, which brings us New Zealand lamb in the spring, Chilean asparagus in December, and fresh tomatoes the year round, has smudged the bright colors of the seasonal food calendar we all once knew by heart. But for local food chains to succeed, people will have to relearn what it means to eat according to the seasons. This is especially true in the case of pastured animals, which can be harvested only after they’ve had several months on rapidly growing grass.