More on this book
Community
Kindle Notes & Highlights
Read between
January 3 - January 8, 2022
pay the full karmic price of a meal. Yet as different as these three journeys (and four meals) turned out to be, a few themes kept cropping up. One is that there exists a fundamental tension between the logic of nature and the logic of human industry, at least as it is presently organized.
Another theme, or premise really, is that the way we eat represents our most profound engagement with the natural world. Daily, our eating turns nature into culture, transforming the body of the world into our bodies and minds.
“Eating is an agricultural act,” as Wendell Berry famously said. It is also an ecological act, and a political act, too.
The C-4 trick represents an important economy for a plant, giving it an advantage, especially in areas where water is scarce and temperatures high. In order to gather carbon atoms from the air, a plant has to open its stomata, the microscopic orifices in the leaves through which plants both take in and exhaust gases. Every time a stoma opens to admit carbon dioxide precious molecules of water escape. It’s as though every time you opened your mouth to eat you lost a quantity of blood. Ideally, you would open your mouth as seldom as possible, ingesting as much food as you could with every bite.
...more
(Ninety-seven percent of what a corn plant is comes from the air, three percent from the ground.)
Planted, a single corn seed yielded more than 150 fat kernels, often as many as 300, while the return on a seed of wheat, when all went well, was something less than 50:1. (At a time when land was abundant and labor scarce, agricultural yields were calculated on a per-seed-sown basis.)
There are in fact no wild maize plants, and teosinte, the weedy grass from which corn is believed to have descended (the word is Nahuatl for “mother of corn”), has no ear, bears its handful of tiny naked seeds on a terminal rachis like most other grasses, and generally looks nothing whatsoever like maize. The current thinking among botanists is that several thousand years ago teosinte underwent an abrupt series of mutations that turned it into corn; geneticists calculate that changes on as few as four chromosomes could account for the main traits that distinguish teosinte from maize. Taken
...more
the standard F-1 hybrids Naylor plants are technological marvels, capable of coaxing 180 bushels of corn from an acre of Iowa soil. One bushel holds 56 pounds of kernels, so that’s slightly more than ten thousand pounds of food per acre; the field George and I planted that day would produce 1.8 million pounds of corn.
The great turning point in the modern history of corn, which in turn marks a key turning point in the industrialization of our food, can be dated with some precision to the day in 1947 when the huge munitions plant at Muscle Shoals, Alabama, switched over to making chemical fertilizer. After the war the government had found itself with a tremendous surplus of ammonium nitrate, the principal ingredient in the making of explosives. Ammonium nitrate also happens to be an excellent source of nitrogen for plants. Serious thought was given to spraying America’s forests with the surplus chemical, to
...more
All life depends on nitrogen; it is the building block from which nature assembles amino acids, proteins, and nucleic acids; the genetic information that orders and perpetuates life is written in nitrogen ink. (This is why scientists speak of nitrogen as supplying life’s quality, while carbon provides the quantity.) But the supply of usable nitrogen on earth is limited. Although earth’s atmosphere is about 80 percent nitrogen, all those atoms are tightly paired, nonreactive, and therefore useless; the nineteenth-century chemist Justus von Liebig spoke of atmospheric nitrogen’s “indifference to
...more
The same recognition by Chinese scientists a few decades later is probably what compelled China’s opening to the West: After Nixon’s 1972 trip the first major order the Chinese government placed was for thirteen massive fertilizer factories. Without them, China would probably have starved. This is why it may not be hyperbole to claim, as Smil does, that the Haber-Bosch process (Carl Bosch gets the credit for commercializing Haber’s idea) for fixing nitrogen is the most important invention of the twentieth century. He estimates that two of every five humans on earth today would not be alive if
...more
This highlight has been truncated due to consecutive passage length restrictions.
When you add together the natural gas in the fertilizer to the fossil fuels it takes to make the pesticides, drive the tractors, and harvest, dry, and transport the corn, you find that every bushel of industrial corn requires the equivalent of between a quarter and a third of a gallon of oil to grow it—or around fifty gallons of oil per acre of corn. (Some estimates are much higher.) Put another way, it takes more than a calorie of fossil fuel energy to produce a calorie of food; before the advent of chemical fertilizer the Naylor farm produced more than two calories of food energy for every
...more
More than half of the world’s supply of usable nitrogen is now man-made.
the Naylor Curve. (“Remember the Laffer curve? Well, this one looks a little like that one, only it’s true.”) Basically it purports to show why falling farm prices force farmers to increase production in defiance of all rational economic behavior.
Corn is the most efficient way to produce energy, soybeans the most efficient way to produce protein.”
Thoreau’s line: “Men have become the tools of their tools.”
Number 2 corn is a lowest common denominator; all the designation tells you is that the moisture content of this corn is no more than 14 percent, and that fewer than 5 percent of the kernels exhibit insect damage.
Cargill is the biggest privately held corporation in the world.
These places are so different from farms and ranches that a new term was needed to denote them: CAFO—Concentrated Animal Feeding Operation.
One of the most striking things that animal feedlots do (to paraphrase Wendell Berry) is to take this elegant solution and neatly divide it into two new problems: a fertility problem on the farm (which must be remedied with chemical fertilizers) and a pollution problem on the feedlot (which seldom is remedied at all).
We now understand that while at a reductive, molecular level protein may indeed be protein, at an ecological or species level, this isn’t quite true. As cannibal tribes have discovered, eating the flesh of one’s own species carries special risks of infection. Kuru, a disease bearing a striking resemblance to BSE, spread among New Guinea tribesmen who ritually ate the brains of their dead kin. Some evolutionary biologists believe that evolution selected against cannibalism as a way to avoid such infections; animals’ aversion to their own feces, and the carcasses of their species, may represent
...more
Most of the antibiotics sold in America today end up in animal feed, a practice that, it is now generally acknowledged (except in agriculture), is leading directly to the evolution of new antibiotic-resistant superbugs. In the debate over the use of antibiotics in agriculture, a distinction is usually made between their clinical and nonclinical uses. Public health advocates don’t object to treating sick animals with antibiotics; they just don’t want to see the drugs lose their effectiveness because factory farms are feeding them to healthy animals to promote growth. But the use of antibiotics
...more
Every day between now and his slaughter in six months, 534 will convert thirty-two pounds of feed into four pounds of gain—new muscle, fat, and bone. This at least is how 534 appears in the computer program I’d seen at the mill: the ratio of feed to gain that determines his efficiency. (Compared to other food animals, cattle are terribly inefficient: The ratio of feed to flesh in chicken, the most efficient animal by this measure, is two pounds of corn to one of meat, which is why chicken costs less than beef.) Poky Feeders is indeed a factory, transforming—as fast as bovinely possible—cheap
...more
(One-fifth of America’s petroleum consumption goes to producing and transporting our food.) After I got home from Kansas, I asked an economist who specializes in agriculture and energy if it might be possible to calculate precisely how much petroleum it will take to grow my steer to slaughter weight. Assuming 534 continues to eat twenty-five pounds of corn a day and reaches a weight of twelve hundred pounds, he will have consumed in his lifetime the equivalent of thirty-five gallons of oil—nearly a barrel. So this is what commodity corn can do to a cow: industrialize the miracle of nature that
...more
The first rough breakdown of all that corn begins with the subdivision of the kernel itself: Its yellow skin will be processed into various vitamins and nutritional supplements; the tiny germ (the dark part nearest the cob, which holds the embryo of the potential future corn plant) will be crushed for its oil; and the biggest part, the endosperm, will be plundered for its rich cache of complex carbohydrates. This oversized packet of starch is corn’s most important contribution to the industrial food chain: an abundance of carbohydrate molecules in long chains that chemists have learned to
...more
“First we separate the corn into its botanical parts—embryo, endosperm, fiber—and then into its chemical parts,” Johnson explained as we began our tour of the plant. When a shipment of corn arrives at the mill, it is steeped for thirty-six hours in a bath of water containing a small amount of sulphur dioxide. The acid bath swells the kernels and frees the starch from the proteins that surround it. After the soak, the swollen kernels are ground in a mill. “By now the germ is rubbery and it pops right off,” Johnson explained. “We take the slurry to a hydroclone”—basically a centrifuge for
...more
This highlight has been truncated due to consecutive passage length restrictions.
you would be hard-pressed to find a late-model processed food that isn’t made from corn or soybeans. In the typical formulation, corn supplies the carbohydrates (sugars and starches) and soy the protein; the fat can come from either plant. (Remember what George Naylor said about the real produce of his farm: not corn and soybeans but “energy and protein.”) The longer the ingredient label on a food, the more fractions of corn and soybeans you will find in it.
The marketers have a term for what a salad or veggie burger does for a fast-food chain: “denying the denier.” These healthier menu items hand the child who wants to eat fast food a sharp tool with which to chip away at his parents’ objections. “But Mom, you can get the salad…”
If where you stand is at the lower end of the world’s economic ladder, however, America’s corn-fed food chain looks like an unalloyed disaster. I mentioned earlier that all life on earth can be viewed as a competition for the energy captured by plants and stored in carbohydrates, energy we measure in calories. There is a limit to how many of those calories the world’s arable land can produce each year, and an industrial meal of meat and processed food consumes—and wastes—an unconscionable amount of that energy. To eat corn directly (as Mexicans and many Africans do) is to consume all the
...more
Perhaps the reason you eat this food quickly is because it doesn’t bear savoring. The more you concentrate on how it tastes, the less like anything it tastes. I said before that McDonald’s serves a kind of comfort food, but after a few bites I’m more inclined to think they’re selling something more schematic than that—something more like a signifier of comfort food. So you eat more and eat more quickly, hoping somehow to catch up to the original idea of a cheeseburger or French fry as it retreats over the horizon. And so it goes, bite after bite, until you feel not satisfied exactly, but
...more
By the end of the season Salatin’s grasses will have been transformed by his animals into some 25,000 pounds of beef, 50,000 pounds of pork, 12,000 broilers, 800 turkeys, 500 rabbits, and 30,000 dozen eggs. This is an astounding cornucopia of food to draw from a hundred acres of pasture,
The salty quotes I got. Speaking in a rapid-fire delivery that sounded like a cross between Bill Clinton and a hopped-up TV evangelist, Salatin delivered a scathing indictment of the “organic empire.” I struggled to keep up with a spirited diatribe that bounced from the “Western conquistador mentality” and the “clash of paradigms” to the “innate distinctive desires of a chicken” and the impossibility of taking a “decidedly Eastern, connected, holistic product, and selling it through a decidedly Western, disconnected, reductionist Wall Streetified marketing system.”
“Me and the folks who buy my food are like the Indians—we just want to opt out. That’s all the Indians ever wanted—to keep their tepees, to give their kids herbs instead of patent medicines and leeches. They didn’t care if there was a Washington, D.C., or a Custer or a USDA; just leave us alone. But the Western mind can’t bear an opt-out option. We’re going to have to refight the Battle of the Little Bighorn to preserve the right to opt out, or your grandchildren and mine will have no choice but to eat amalgamated, irradiated, genetically prostituted, bar-coded, adulterated fecal spam from the
...more
Taken as a whole, the story on offer in Whole Foods is a pastoral narrative in which farm animals live much as they did in the books we read as children, and our fruits and vegetables grow in well-composted soils on small farms much like Joel Salatin’s. “Organic” on the label conjures up a rich narrative, even if it is the consumer who fills in most of the details, supplying the hero (American Family Farmer), the villain (Agribusinessman), and the literary genre, which I’ve come to think of as Supermarket Pastoral.
Supermarket Pastoral is a most seductive literary form, beguiling enough to survive in the face of a great many discomfiting facts. I suspect that’s because it gratifies some of our deepest, oldest longings, not merely for safe food, but for a connection to the earth and to the handful of domesticated creatures we’ve long depended on. Whole Foods understands all this better than we do. One of the company’s marketing consultants explained to me that the Whole Foods shopper feels that by buying organic he is “engaging in authentic experiences” and imaginatively enacting a “return to a utopian
...more
two big corporate organic growers in California, Earthbound Farm and Grimmway Farms, * which together dominate the market for organic fresh produce in America. (Earthbound alone grows 80 percent of the organic lettuce sold in America.)
These were the three struts on which organic’s revolutionary program stood; since ecology taught “you can never do only one thing,” what you ate was inseparable from how it was grown and how it reached your table.
model of various premodern agricultural systems, as described in books like Farmers of Forty Centuries by F. H. King and Sir Albert Howard’s The Soil and Health and An Agricultural Testament. This last book may fairly be called the movement’s bible.
Joan Dye Gussow, a nutritionist and an outspoken standards-board member, made the case against synthetics in a 1996 article that was much debated at the time: “Can an Organic Twinkie Be Certified?”
A one-pound box of prewashed lettuce contains 80 calories of food energy. According to Cornell ecologist David Pimentel, growing, chilling, washing, packaging, and transporting that box of organic salad to a plate on the East Coast takes more than 4,600 calories of fossil fuel energy, or 57 calories of fossil fuel energy for every calorie of food. (These figures would be about 4 percent higher if the salad were grown conventionally.)
success, like Gene Kahn’s, has opened up a gulf between Big and Little Organic and convinced many of the movement’s founders, as well as pioneering farmers like Joel Salatin, that the time has come to move beyond organic—to raise the bar on the American food system once again. Some of these innovating farmers are putting their emphasis on quality, others on labor standards, some on local systems of distribution, and still others on achieving a more thoroughgoing sustainability. Michael Ableman, one of the self-described beyond organic farmers I interviewed in California, said, “We may have to
...more
enough) account for much of this longevity, but some of it, as the Goodmans had explained to me, owes to the fact that the greens were grown organically. Since they’re not pumped up on synthetic nitrogen, the cells of these slower-growing leaves develop thicker walls and take up less water, making them more durable. And, I’m convinced, tastier, too. When I visited Greenways Organic, which grows both conventional and organic tomatoes, I learned that the organic ones consistently earn higher Brix scores (a measure of sugars) than the same varieties grown conventionally. More sugars means less
...more
published in the Journal of Agriculture and Food Chemistry in 2003 described an experiment in which identical varieties of corn, strawberries, and blackberries grown in neighboring plots using different methods (including organically and conventionally) were compared for levels of vitamins and polyphenols. Polyphenols are a group of secondary metabolites manufactured by plants that we’ve recently learned play an important role in human health and nutrition. Many are potent antioxidants; some play a role in preventing or fighting cancer; others exhibit antimicrobial properties. The Davis
...more
To a remarkable extent, farmers succeeded in creating the new food chain on their farms; the trouble began when they encountered the expectations of the supermarket. As in so many other realms, nature’s logic has proven no match for the logic of capitalism, one in which cheap energy has always been a given. And so, today, the organic food industry finds itself in a most unexpected, uncomfortable, and, yes, unsustainable position: floating on a sinking sea of petroleum.
For Allan Nation, who grew up on a cattle ranch in Mississippi, doing so is as much a matter of sound economics as environmental virtue. “All agriculture is at its heart a business of capturing free solar energy in a food product that can then be turned into high-value human energy,”
“This vertical axis here is the height of our grass plant, okay? And the horizontal axis is time: the number of days since this paddock was last grazed.” He started tracing a big S on the page, beginning in the lower left-hand corner where the two axes met. “See, the growth starts out real slow like this, but then after a few days it begins to zoom. That’s called ‘the blaze of growth,’ when the grass has recovered from the first bite, rebuilt its reserves and root mass, and really taken off. But after a while”—the curve leveled out at around day fourteen or so—“it slows down again, as the
...more
The ninety-nine-cent price of a fast-food hamburger simply doesn’t take account of that meal’s true cost—to soil, oil, public health, the public purse, etc., costs which are never charged directly to the consumer but, indirectly and invisibly, to the taxpayer (in the form of subsidies), the health care system (in the form of food-borne illnesses and obesity), and the environment (in the form of pollution), not to mention the welfare of the workers in the feedlot and the slaughterhouse and the welfare of the animals themselves. If not for this sort of blind-man’s accounting, grass would make a
...more
there are a great many reasons American cattle came off the grass and into the feedlot, and yet all of them finally come down to the same one: Our civilization and, increasingly, our food system are strictly organized on industrial lines. They prize consistency, mechanization, predictability, interchangeability, and economies of scale. Everything about corn meshes smoothly with the gears of this great machine; grass doesn’t.
1993 book, Pastured Poultry Profit$, something of a cult classic among grass farmers. (Joel has self-published four other how-to books on farming, and all but one of them has a $ stepping in for an S somewhere in its title.)
fly larvae in the manure are on a four-day cycle, he explained. “Three days is ideal. That gives the grubs a chance to fatten up nicely, the way the hens like them, but not quite long enough to hatch into flies.” The result is prodigious amounts of protein for the hens, the insects supplying as much as a third of their total diet—and making their eggs unusually rich and tasty. By means of this simple little management trick, Joel is able to use his cattle’s waste to “grow” large quantities of high-protein chicken feed for free; he says this trims his cost of producing eggs by twenty-five cents
...more