More on this book
Community
Kindle Notes & Highlights
Read between
May 31 - July 8, 2023
Before me was one of the most beautiful fossils I had ever seen. It was a skeleton, about the size of a mule, its chocolate-brown bones standing out from the dull gray limestone surrounding it. A dinosaur for sure, its steak-knife teeth, pointy claws, and long tail leaving no doubt that it was a close cousin of Jurassic Park’s villainous Velociraptor. But this was no ordinary dinosaur. Its bones were light and hollow, its legs long and skinny like a heron’s, its slender skeleton the hallmark of an active, dynamic, fast-moving animal. And not only were there bones, but there were feathers
...more
a new species of dinosaur is currently being found, on average, once a week.
They were remarkably successful, thriving for over 150 million years and producing some of the most amazing animals that have ever lived—including birds, some ten thousand species of modern-day dinosaurs.
STEVE BRUSATTE Edinburgh, Scotland MAY 18, 2017
Descriptions of the doom and gloom could go on for pages, but the point is, the end of the Permian was a very bad time to be alive. It was the biggest episode of mass death in the history of our planet. Somewhere around 90 percent of all species disappeared.
There have been five particularly severe mass extinctions over the past 500 million years. The one 66 million years ago at the end of the Cretaceous period, which wiped out the dinosaurs, is surely the most famous.
Permian. That moment of time 252 million years ago, chronicled in the swift change from mudstone to pebbly rock in the Polish quarry, was the closest that life ever came to being completely obliterated.
Everything I describe above is what we call a body fossil, an actual part of a plant or animal that turns into stone. But there is another type: a trace fossil, which records the presence or behavior of an organism or preserves something that an organism produced. The best example is a footprint; others are burrows, bite marks, coprolites (fossilized dung), and eggs and nests. These can be particularly valuable, because they can tell us how extinct animals interacted with each other and their environment—how they moved, what they ate, where they lived, and how they reproduced.
Dinosaurs lived during three periods of geological history: the Triassic, Jurassic, and Cretaceous (which collectively form the Mesozoic Era). The Permian Period—when that weird and wonderful cast of creatures was frolicking alongside the Polish lakes—came right before the Triassic. We often think of the dinosaurs as ancient, but in fact, they’re relative newcomers in the history of life.
An animal has only one skeleton, but it can leave millions of footprints,
The Permian tracks from the Holy Cross Mountains are a diverse lot, and most were made by amphibians, small reptiles, and early synapsids, progenitors of mammals that are often annoyingly, and incorrectly, described as mammal-like reptiles (although they are not actually reptiles) in kids’ books and museum exhibits. Gorgonopsians and dicynodonts are two types of these primitive synapsids. By all accounts these latest Permian ecosystems were strong—there were many varieties of animals, some small and others more than ten feet long and weighing over a ton, living together, thriving in the arid
...more
The latest Permian and earliest Triassic seem to be two different worlds, which is remarkable because the tracks were all left in the identical place, in the same exact environment and climate. Southern Poland didn’t stop being a humid lakeland fed by raging mountain streams as the Permian ticked over into the Triassic. No, it was the animals themselves that changed. I get the creeps when looking at the earliest Triassic tracks. I can sense the long-distant specter of death. There are hardly any tracks at all, just a few small prints here and there, but a lot of burrows jutting deep into the
...more
The Permian world was dominated by sprawlers. After the extinction, however, one new group of reptiles evolved from these sprawlers but developed an upright posture—the archosaurs. This was a landmark evolutionary event. Sprawling is all well and good for cold-blooded critters that don’t need to move very fast. Tucking your limbs under your body, however, opens up a new world of possibilities. You can run faster, cover greater distances, track down prey with greater ease, and do it all more efficiently, wasting less energy as your columnar limbs move back and forth in an orderly fashion rather
...more
Walking upright, it seems, was one of the ways in which animals recovered—and indeed, improved—after the planet was shocked by the volcanic eruptions.
Very early, they split into two major lineages, which would grapple with each other in an evolutionary arms race over the remainder of the Triassic. Remarkably, both of these lineages survive today. The first, the pseudosuchians, later gave rise to crocodiles. As shorthand, they are usually referred to as the crocodile-line archosaurs. The second, the avemetatarsalians, developed into pterosaurs (the flying reptiles often called pterodactyls), dinosaurs, and by extension the birds that, as we shall see, descended from the dinosaurs. This group is called the bird-line archosaurs.
In Prorotodactylus we’re looking at traces left behind by the type of animal that evolved into dinosaurs. It was about the size of a house cat and would have been lucky to tip the scales at ten pounds. It walked on all fours, leaving handprints and footprints. Its limbs must have been quite long, judging from the big gaps between successive prints of the same hands and feet. The legs must have been particularly long and skinny, because the footprints often are positioned in front of the handprints, a sign that its feet were overstepping its hands. The hands were small and would have been good
...more
Sites like Wióry, Pałęgi, and Baranów yield an equally unfamiliar array of dinosauromorph tracks—Rotodactylus, Sphingopus, Parachirotherium, Atreipus—which diversify over time. More and more track types show up; they get larger; they develop a greater diversity of shape, some even losing their outer toes entirely so that the center toes are all that remain. Some of the trackways stop showing impressions of the hand—these dinosauromorphs were walking on only their hind legs. By about 246 million years ago, dinosauromorphs the size of wolves were racing around on two legs, grabbing prey with
...more
The boundary between nondinosaurs and dinosaurs is fuzzy, even artificial, a by-product of scientific convention. The same way that nothing really changes as you cross the border from Illinois into Indiana, there was no profound evolutionary leap as one of these dog-size dinosauromorphs changed into another dog-size dinosauromorph that was just over that dividing line on the family tree that denotes dinosaurs.
The first true dinosaurs arose some time between 240 and 230 million years ago. The uncertainty reflects two problems that continue to cause me headaches but are ripe to be solved by the next generation of paleontologists.
Radiometric dating revolutionized the field of geology in the middle of the twentieth century; it was pioneered by a Brit named Arthur Holmes, who once occupied an office a few doors down from mine at the University of Edinburgh. Today’s labs, like the ones run by my colleagues at New Mexico Tech and the Scottish Universities Environmental Research Centre near Glasgow, are high-tech, ultramodern facilities where scientists in white lab coats use multi million-dollar machines bigger than my old Manhattan apartment to date microscopic rock crystals. The techniques are so refined that rocks
...more
radiometric dating works only on rocks that cool from a liquid melt, like basalts or granites that solidify from lava. The rocks that contain dinosaur fossils, like mudstone and sandstone, were not formed this way, but rather from wind and water currents that dumped sediment. Dating these types of rocks is much more difficult.
we do know that by 230 million years ago, true dinosaurs had entered the picture. The fossils of several species with unquestionable signature features of dinosaurs are found in well-dated rocks of that age. They’re found in a place far from where the earliest dinosauromorphs were cavorting in Poland—the mountainous canyons of Argentina.
The area is so heavily eroded today, and so little disturbed by buildings and roads and other human nuisances that cover up fossils, that the dinosaurs are relatively easy to find, at least compared to so many other parts of the world where we hike around for days just praying to find anything, even just a tooth. The very first discoveries here were made by cowpokes or other locals, and it wasn’t until the 1940s that scientists began to collect, study, and describe fossils from Ischigualasto, then still another few decades until intensive expeditions were launched. The first major collecting
...more
Herrerasaurus was a fierce predator with an arsenal of sharp teeth and claws, a primitive version of T. rex or Velociraptor. Herrerasaurus was one of the very first theropod dinosaurs—a founding member of that dynasty of smart, agile predators that would later ascend to the top of the food chain and ultimately evolve into birds.
Eoraptor.
Eodromaeus.
Chromogisaurus, a larger Brontosaurus relative that grew up to a couple of meters long and was something of a middle-of-the-food-chain plant-eater.
The bones that Romer, Reig, and Bonaparte, and then later Paul, Ricardo, and their many colleagues, have pried from the lunar landscape of Ischigualasto are the very first records of true dinosaurs, living, evolving, and beginning their long march to dominance.
These first dinosaurs weren’t quite dominant yet, overshadowed by the larger and more diverse amphibians, mammal cousins, and crocodile relatives that they lived alongside on those dry, occasionally flooded plains of the Triassic. Even Herrerasaurus probably wasn’t at the top of the food chain, ceding that title to the murderous twenty-five-foot-long crocodile-line archosaur Saurosuchus. But the dinosaurs had arrived on the scene. The three major groups—the meat-eating theropods, long-necked sauropods, and herbivorous ornithischians—had already diverged from each other on the family tree,
...more
When the very first dinosaurs, like Herrerasaurus and Eoraptor, evolved from their cat-size dinosauromorph ancestors some 240 to 230 million years ago, there were no individual continents—no Australia or Asia or North America. There was no Atlantic Ocean separating the Americas from Europe and Africa, no Pacific Ocean on the flip side of the globe. Instead, there was just one huge solid unbroken mass of land—what geologists refer to as a supercontinent. It was surrounded by a single global ocean. Geography class would have been easy in those days: the supercontinent we call Pangea, and the
...more
on the other side, there was open ocean. That meant that currents could travel unimpeded from the equator to the poles, so there was a direct path for water baked in the low-latitude sun to heat up the high-latitude regions. This prevented ice caps from forming. Compared to today, the Arctic and Antarctic were balmy, with summer temperatures similar to those of London or San Francisco, and winter temperatures that barely inched below freezing.
Because the supercontinent was basically centered on the equator, half the land was always scorching in the summer while the other half was cooling down in the winter. The marked temperature differences between north and south caused violent air currents to regularly stream across the equator. When the seasons changed, these currents shifted direction. That kind of thing happens today in some parts of the world, particularly India and Southeast Asia. It’s what drives the monsoons, the alternation of a dry season with a prolonged deluge of rain and nasty storms. You’ve probably seen images in
...more
I’ve been exploring is a remnant of old Pangea that can be found in the sunny Algarve region of Portugal, at the very southwestern corner of Europe. During those formative years when dinosaurs were navigating the megamonsoons and boiling heat waves of the Triassic, this part of Portugal was only 15 or 20 degrees north of the equator, about the same latitude as Central America today.
Metoposaurus and its kin were not aliens. These terrifying predators were the ancestors of today’s frogs, toads, newts, and salamanders.
many of today’s most recognizable animals can be traced back to the Triassic. The very first turtles, lizards, crocodiles, and even mammals came into the world during this time. All of these animals—so much a fabric of the Earth we call home today—rose up alongside the dinosaurs in the harsh surroundings of prehistoric Pangea. The apocalypse of the end-Permian extinction left such an empty playing field that there was space for all sorts of new creatures to evolve, which they did unabated during the 50 million years of the Triassic. It was a time of grand biological experimentation that
...more
in the arid belts closer to the equator, dinosaurs were absent or extremely rare. Just as in Portugal, there are great fossil sites in Spain, Morocco, and along the eastern coast of North America where you can find plenty of amphibians and reptiles, but nary a dinosaur. All of these places were in the parched arid sector of Pangea during those 10 million years when dinosaurs were beginning to blossom in the more bearable humid regions. It seems these first dinosaurs couldn’t handle the desert heat. It’s an unexpected story line. Dinosaurs didn’t just sweep across Pangea the moment they
...more
The skull of Coelophysis, the primitive theropod found in abundance at Ghost Ranch.
Up until then, almost everyone thought that the primitive dinosauromorphs were an uninteresting ancestral stock whose only destiny was to give birth to the mighty dinosaurs. Once that job was done, they could quietly fade away to extinction. But here they were, all over Late Triassic North America, even a new poodle-size species called Dromomeron in the Hayden Quarry, living alongside proper dinosaurs for some 20 million years.
Middle Triassic versus Late Triassic, let’s say—and see if dinosaurs or pseudosuchians were becoming more or less anatomically diverse as the Triassic progressed. We did that and came up with a startling result that we published in 2008 in a study that helped launch my career. All throughout the Triassic, the pseudosuchians were significantly more morphologically diverse than dinosaurs.
final 30 million years of the Triassic, great geological forces were tugging on Pangea from both the east and west. These forces—a planet-scale cocktail of gravity, heat, and pressure—are strong enough to make continents move over time. Because the pull was coming from two opposite directions, Pangea began to stretch and gradually become thinner, each small earthquake causing another tear. Imagine Pangea as a giant pizza, being torn apart by two hungry friends at opposite ends of the table: the crust becomes thinner until there is a rupture and it breaks into two. The same thing happened with
...more
So what’s a 1960s teenager to do when his favorite fossil site is being destroyed? Paul Olsen skipped the middlemen and went right to the top. He began writing letters to Richard Nixon, the newly elected president who had yet to disgrace himself. Lots of letters. He begged Nixon to use his presidential powers to get the quarry preserved as a protected park, and even sent a fiberglass cast of a theropod track to the White House. Olsen led a media campaign, too, and was profiled in an article in Life magazine. His brazen persistence paid off: in 1970 the company that owned the quarry donated the
...more
Clathrates are unlike the solid blocks of ice we’re used to, the ones we put in our drinks or carve into fancy sculptures at parties. They are a more porous substance, a latticework of frozen water molecules that can trap other substances inside it. One of those substances is methane, a gas that seeps up constantly from the deep Earth and infiltrates the oceans but is caged in the clathrates before it can leak into the atmosphere. Methane is nasty: it’s an even more powerful greenhouse gas than carbon dioxide, packing an earth-warming punch over thirty-five times as great. So when that first
...more
the volcanoes kicked into gear. Suddenly the diversity of non-dinosaur tracks drops dramatically in those first Jurassic rocks above the lava flows. Many non-dinosaur tracks abruptly disappear, including some of the most conspicuous prints left by crocodile-cousin pseudosuchians, which had previously been more abundant and diverse than the dinosaurs. Whereas dinosaurs made up only about 20 percent of all tracks before the volcanoes, right afterward half of all footprints belong to dinosaurs.
Somehow dinosaurs were the victors. They endured the Pangean split, the volcanism, and the wild climate swings and fires that vanquished their rivals. I wish I had a good answer for why. It’s a mystery
THE JURASSIC PERIOD marks the beginning of the Age of Dinosaurs proper. Yes, the first true dinosaurs entered the scene at least 30 million years before the Jurassic began. But as we’ve seen, these earlier Triassic dinosaurs had not even a remote claim to being dominant.
Fossils of some of the first truly gigantic sauropods—ones that weighed over ten tons, were over fifty feet long, and had necks that could stretch several stories into the sky—have started turning up in Scotland over the past few decades, on a beautiful island off the west coast called the Isle of Skye.
Skye. Dugald was a local boy who grew up in the tiny hamlet of Ellishadder on the far northeastern arm of the island, a rugged landscape of craggy peaks, green hills, peat-colored streams, and windswept shores that looks like something out of a fantasy novel—very Tolkienesque. He was raised in a household that spoke Gaelic, the native language of the Scottish Highlands, which is spoken by only about fifty thousand people today but which still has a presence on the road signs and in the schools on remote islands like Skye. When Dugald was fifteen years old, he found a cache of arrow points and
...more
The dinosaur dance floor of sauropod tracks that I discovered with Tom Challands on the Isle of Skye. Photo courtesy of the author
malformed depression in the rock, about the size of a car tire.
many other similar depressions, now visible in the low-angle afternoon light. They were all about the same size, and the closer we looked, the more we saw that they stretched in every direction around us. They seemed to show a pattern. Individual holes were lined up in two long rows, in something of a zigzag arrangement: left-right, left-right, left-right. Ribbons of them were crisscrossing much of the rock platform that we had been working on all day.