More on this book
Community
Kindle Notes & Highlights
Read between
January 29 - February 3, 2025
There were slimy salamanders bigger than dogs, loitering near the water’s edge and occasionally snapping at a passing fish. Stocky beasts called pareiasaurs waddled around on all fours, their knobby skin, front-heavy build, and general brutish appearance making them seem like a mad reptilian offensive lineman. Fat little things called dicynodonts rummaged around in the muck like pigs, using their sharp tusks to pry up tasty roots. Lording over it all were the gorgonopsians, bear-size monsters who reigned at the top of the food chain, slicing into pareiasaur guts and dicynodont flesh with their
...more
these volcanoes were nothing more than big cracks in the ground, often miles long, that continuously belched out lava, year after year, decade after decade, century after century. The eruptions at the end of the Permian lasted for a few hundred thousand years, perhaps even a few million.
Even today, more than a quarter billion years later, the black basalt rocks that hardened out of this lava cover nearly a million square miles of Siberia,
Dust shot into the atmosphere, contaminating the high-altitude air currents and spreading around the world, blocking out the sun and preventing plants from photosynthesizing. The once lush conifer forests died out; then the pareiasaurs and dicynodonts had no plants to eat, and then the gorgonopsians had no meat.
Descriptions of the doom and gloom could go on for pages, but the point is, the end of the Permian was a very bad time to be alive. It was the biggest episode of mass death in the history of our planet. Somewhere around 90 percent of all species disappeared.
As horrible as the end-Cretaceous extinction was, it had nothing on the one at the end of the Permian.
Dinosaurs lived during three periods of geological history: the Triassic, Jurassic, and Cretaceous (which collectively form the Mesozoic Era).
They were simple at first—soft sacs of goo like sponges and jellyfish, until they invented shells and skeletons. Around 540 million years ago, during the Cambrian Period, these skeletonized forms exploded in diversity, became extremely abundant, started eating one another, and began forming complex ecosystems
some of them turned their fins into arms, grew fingers and toes, and emerged onto the land, about 390 million years ago. These were the first tetrapods, and their descendants include all vertebrates that live on land
How many fingers or toes are there? Which ones are longest? Which way do they face? Do only the fingers and toes make an impression, or does the palm of the hand and arch of the foot also leave a mark? Are the left and right tracks really close together, as the trackmaker was walking with its limbs right under its body, or are they far apart, made by a creature with limbs sprawled out to the side? By following this checklist, you can usually figure out which general group of animals left the tracks
most were made by amphibians, small reptiles, and early synapsids, progenitors of mammals that are often annoyingly, and incorrectly, described as mammal-like reptiles (although they are not actually reptiles)
I get the creeps when looking at the earliest Triassic tracks. I can sense the long-distant specter of death. There are hardly any tracks at all, just a few small prints here and there, but a lot of burrows jutting deep into the rock. It seems the surface world was annihilated and whatever creatures inhabited this haunted landscape were hiding underground.
about 250 million years ago, just a couple of million years after the extinction, a new type of track starts showing up. They’re small, just a few centimeters long, about the size of a cat’s paw. They are arranged in narrow trackways, the five-fingered handprints positioned in front of the slightly larger footprints, which have three long central toes flanked by a tiny toe on each side.
There is only a little bit of space between the left and right tracks in the sequence, just a few centimeters. There’s only one way for an animal to make tracks like this: by walking upright, with the arms and legs right underneath the body.
The Permian world was dominated by sprawlers. After the extinction, however, one new group of reptiles evolved from these sprawlers but developed an upright posture—the archosaurs.
Walking upright, it seems, was one of the ways in which animals recovered—and indeed, improved—after the planet was shocked by the volcanic eruptions.
Very early, they split into two major lineages, which would grapple with each other in an evolutionary arms race over the remainder of the Triassic. Remarkably, both of these lineages survive today. The first, the pseudosuchians, later gave rise to crocodiles. As shorthand, they are usually referred to as the crocodile-line archosaurs. The second, the avemetatarsalians, developed into pterosaurs (the flying reptiles often called pterodactyls), dinosaurs, and by extension the birds that, as we shall see, descended from the dinosaurs. This group is called the bird-line archosaurs.
the hinge-like joint between the toes and the metatarsals, which reflects the characteristic ankle of dinosaurs and birds, which can move only in a back-and-forth direction, without even the slightest possibility of twisting.
It was about the size of a house cat and would have been lucky to tip the scales at ten pounds. It walked on all fours, leaving handprints and footprints. Its limbs must have been quite long, judging from the big gaps between successive prints of the same hands and feet. The legs must have been particularly long and skinny, because the footprints often are positioned in front of the handprints, a sign that its feet were overstepping its hands. The hands were small and would have been good at grabbing things, whereas the long, compressed feet were perfect for running. The Prorotodactylus animal
...more
By about 246 million years ago, dinosauromorphs the size of wolves were racing around on two legs, grabbing prey with their clawed hands, acting a whole lot like a pint-size version of a T. rex.
The boundary between nondinosaurs and dinosaurs is fuzzy, even artificial, a by-product of scientific convention. The same way that nothing really changes as you cross the border from Illinois into Indiana, there was no profound evolutionary leap as one of these dog-size dinosauromorphs changed into another dog-size dinosauromorph that was just over that dividing line on the family tree that denotes dinosaurs.
The first true dinosaurs arose some time between 240 and 230 million years ago.
The best way to figure out the age of rocks is to use a process called radiometric dating, which compares the percentages of two different types of elements in the rock—say, potassium and argon.
We know from lab experiments the rate at which potassium-40 changes into argon-40. Knowing this rate, we can take a rock, measure the percentages of the two isotopes, and calculate how old the rock is.
The techniques are so refined that rocks hundreds of millions of years old can be precisely dated to a small window of time, within a few tens or hundreds of thousands of years.
radiometric dating works only on rocks that cool from a liquid melt, like basalts or granites that solidify from lava. The rocks that contain dinosaur fossils, like mudstone and sandstone, were not formed this way, but rather from wind and water currents that dumped sediment. Dating these types of rocks is much more difficult.
ALL UNCERTAINTIES ASIDE, we do know that by 230 million years ago, true dinosaurs had entered the picture.
Herrerasaurus was one of the very first theropod dinosaurs—a founding member of that dynasty of smart, agile predators that would later ascend to the top of the food chain and ultimately evolve into birds.
he realized that he had plucked the head off the nearly complete skeleton of a dinosaur, a long-legged, lightly built speed demon about the size of a golden retriever. They named it Eoraptor. Those teeth poking out from the skull turned out to be highly unusual: the ones in the back of the jaw were sharp and serrated like a steak knife, surely to slice through flesh, but the ones at the tip of the snout were leaf-shaped with coarse projections called denticles, the same type of tooth that some long-necked, potbellied sauropod dinosaurs would later use to grind plants. This hinted that Eoraptor
...more
Herrerasaurus probably wasn’t at the top of the food chain, ceding that title to the murderous twenty-five-foot-long crocodile-line archosaur Saurosuchus. But the dinosaurs had arrived on the scene. The three major groups—the meat-eating theropods, long-necked sauropods, and herbivorous ornithischians—had already diverged from each other
Geography class would have been easy in those days: the supercontinent we call Pangea, and the ocean we call Panthalassa.
It seems these first dinosaurs couldn’t handle the desert heat. It’s an unexpected story line. Dinosaurs didn’t just sweep across Pangea the moment they originated, like some infectious virus. They were geographically localized, held in place not by physical barricades but by climates they couldn’t endure.
when it appeared that dinosaurs were never going to escape their rut, two important things happened that gave them an opening. First, in the humid belt, the dominant large plant-eaters, the rhynchosaurs and dicynodonts, became less common. In some areas they disappeared entirely. We don’t yet fully understand why, but the consequences were unmistakable. The fall of these herbivores gave the plant-eating primitive sauropod cousins like Panphagia and Saturnalia an opportunity
The second major breakthrough, around 215 million years ago, was that the first dinosaurs began arriving in the subtropical arid environments of the Northern Hemisphere, then about 10 degrees above the equator, now part of the American Southwest. We don’t know exactly why dinosaurs were now able to migrate out of their safe humid homes and into the harsh deserts. It probably had something to do with climate change—shifts in the monsoons and the amount of carbon dioxide in the atmosphere made the differences between the humid and arid regions less stark,
The two Easterners were engaged in a bitter feud known to history as the Bone Wars (of which, more later), but by this stage of their careers, neither of them particularly liked to brave the elements and Native American war parties—Geronimo would continue raiding New Mexico and Arizona until 1886. Rather than look for fossils themselves, they relied on a network of hired guns.
In a series of eureka moments, they realized that most of those supposed dinosaur fossils collected by others weren’t dinosaurs at all, but primitive dinosauromorph cousins of dinosaurs or, in some cases, early crocodiles and their kin that just so happened to look like dinosaurs. So not only were dinosaurs rare in the Late Triassic deserts, but they were still living alongside their archaic relatives,
the animals of the Hayden Quarry did not have an easy life. They lived in an environment that wasn’t always a desert, but one in which seasonal climates dramatically fluctuated. It was bone-dry for much of the year, but wetter and cooler during other times—hyperseasonality,
The high concentration of carbon dioxide in the Late Triassic started a chain reaction: huge fluctuations in temperature and precipitation, raging wildfires during parts of the year but humid spells in others. Stable plant communities had a difficult time establishing themselves. It was a chaotic, unpredictable, unstable part of Pangea. Some animals could deal with that better than others. Dinosaurs seem to have been able to cope a little bit, but not able to truly thrive. The smaller meat-eating theropods were able to manage, but the larger, fast-growing plant-eaters, which required a
...more
Early in the Triassic, archosaurs split into two major clans: the avemetatarsalians, which led to dinosauromorphs and dinosaurs, and the pseudosuchians, which gave rise to crocodiles.
Effigia okeeffeae: the first name being the Latin word for ghost, in reference to Ghost Ranch, and the second paying homage to the ranch’s most famous resident. Effigia made international headlines: the media loved this awkward-looking, toothless, stub-armed ancient crocodilian creature trying to pretend that it was a dinosaur.
Both groups were becoming more diverse as the Triassic unfolded, but the pseudosuchians were always outpacing the dinosaurs. Far from being superior warriors slaying their competitors, dinosaurs were being overshadowed by their crocodile-line rivals during the 30 million years they coexisted in the Triassic.
At the very end of the Triassic, 201 million years ago, the world was violently remade. For 40 million years, Pangea had been gradually splintering apart, and magma had been welling underground. Now that the supercontinent had finally cracked, the magma had somewhere to go.
These were some of the largest volcanic eruptions in Earth history. Not only did lava smother the land, but noxious gases that rode up with the lava poisoned the atmosphere and caused runaway global warming. These things triggered one of the biggest mass extinctions in the history of life, a mass die-off that claimed over 30 percent of all species and maybe much more. Paradoxically, however, it was also a mass extinction that helped dinosaurs break out of their early-life slump and become the enormous, dominant animals that stoke our imaginations.
all of that once-trapped methane was suddenly released. This initiated a runaway train of global warming. The amount of greenhouse gas in the atmosphere approximately tripled within a few tens of thousands of years, and temperatures increased by 3 or 4 degrees Celsius. Ecosystems on land and in the oceans couldn’t cope with such rapid change. The much hotter temperatures made it impossible for many plants to grow, and indeed upwards of 95 percent of them went extinct.
During the Late Triassic, beginning about 225 million years ago, when the rift basins were just beginning to form, dinosaurs started to leave their marks in the form of rare footprints. There are three-toed tracks called Grallator, ranging from about two to six inches (five to fifteen centimeters) long, made by small, fast-running, meat-eating dinosaurs that stood on two legs like the Ghost Ranch Coelophysis. There’s a second type of track called Atreipus, which are about the same size as Grallator but include small handprints next to the three-toed footprints, a sign that the trackmaker was
...more
But then the volcanoes kicked into gear. Suddenly the diversity of non-dinosaur tracks drops dramatically in those first Jurassic rocks above the lava flows. Many non-dinosaur tracks abruptly disappear, including some of the most conspicuous prints left by crocodile-cousin pseudosuchians, which had previously been more abundant and diverse than the dinosaurs. Whereas dinosaurs made up only about 20 percent of all tracks before the volcanoes, right afterward half of all footprints belong to dinosaurs. A variety of totally new dinosaur tracks enter the record:
The only pseudosuchians that made it through the great Pangean breakup were a few types of primitive crocodiles, a handful of battle-worn stragglers that would eventually evolve into the modern alligators and crocodiles