Why We Sleep: Unlocking the Power of Sleep and Dreams
Rate it:
Open Preview
0%
Flag icon
Routinely sleeping less than six hours a night weakens your immune system, substantially increasing your risk of certain forms of cancer. Insufficient sleep appears to be a key lifestyle factor linked to your risk of developing Alzheimer’s disease. Inadequate sleep—even moderate reductions for just one week—disrupts blood sugar levels so profoundly that you would be classified as pre-diabetic. Short sleeping increases the likelihood of your coronary arteries becoming blocked and brittle, setting you on a path toward cardiovascular disease, stroke, and congestive heart failure. Fitting ...more
1%
Flag icon
Add the above health consequences up, and a proven link becomes easier to accept: relative to the recommended seven to nine hours, the shorter your sleep, the shorter your life span. The old maxim “I’ll sleep when I’m dead” is therefore unfortunate. Adopt this mind-set, and it is possible that you will be dead sooner and the quality of that (shorter) life will be worse.
1%
Flag icon
Add the above health consequences up, and a proven link becomes easier to accept: relative to the recommended seven to nine hours, the shorter your sleep, the shorter your life span. The old maxim “I’ll sleep when I’m dead” is therefore unfortunate. Adopt this mind-set, and it is possible that you will be dead sooner and the quality of that (shorter) life will be worse.
1%
Flag icon
Sadly, human beings are in fact the only species that will deliberately deprive themselves of sleep without legitimate gain.
1%
Flag icon
It may not be a coincidence that countries where sleep time has declined most dramatically over the past century, such as the US, the UK, Japan, and South Korea, and several in western Europe, are also those suffering the greatest increase in rates of the aforementioned physical diseases and mental disorders.
1%
Flag icon
Consider that we have known the functions of the three other basic drives in life—to eat, to drink, and to reproduce—for many tens if not hundreds of years now. Yet the fourth main biological drive, common across the animal kingdom—the drive to sleep—has continued to elude science for millennia.
1%
Flag icon
Sleep dispenses a multitude of health-ensuring benefits, yours to pick up in repeat prescription every twenty-four hours, should you choose.
3%
Flag icon
Everyone generates a circadian rhythm (circa, meaning “around,” and dian, derivative of diam, meaning “day”). Indeed, most living creatures on the planet with a life span of more than several days generate this natural cycle. The internal twenty-four-hour clock within your brain communicates its daily circadian rhythm signal to every other region of your brain and every organ in your body.
3%
Flag icon
It is no coincidence that the likelihood of breaking an Olympic record has been clearly tied to time of day, being maximal at the natural peak of the human circadian rhythm in the early afternoon.
4%
Flag icon
When I tell you that the suprachiasmatic nucleus is composed of 20,000 brain cells, or neurons, you might assume it is enormous, consuming a vast amount of your cranial space, but actually it is tiny. The brain is composed of approximately 100 billion neurons, making the suprachiasmatic nucleus minuscule in the relative scheme of cerebral matter. Yet despite its stature, the influence of the suprachiasmatic nucleus on the rest of the brain and the body is anything but meek. This tiny clock is the central conductor of life’s biological rhythmic symphony—yours and every other living species.
4%
Flag icon
When I tell you that the suprachiasmatic nucleus is composed of 20,000 brain cells, or neurons, you might assume it is enormous, consuming a vast amount of your cranial space, but actually it is tiny. The brain is composed of approximately 100 billion neurons, making the suprachiasmatic nucleus minuscule in the relative scheme of cerebral matter. Yet despite its stature, the influence of the suprachiasmatic nucleus on the rest of the brain and the body is anything but meek. This tiny clock is the central conductor of life’s biological rhythmic symphony—yours and every other living species.
5%
Flag icon
Instructed by the suprachiasmatic nucleus, the rise in melatonin begins soon after dusk, being released into the bloodstream from the pineal gland, an area situated deep in the back of your brain. Melatonin acts like a powerful bullhorn, shouting out a clear message to the brain and body: “It’s dark, it’s dark!” At this moment, we have been served a writ of nightime, and with it, a biological command for the timing of sleep onset.
6%
Flag icon
Caffeine is not a food supplement. Rather, caffeine is the most widely used (and abused) psychoactive stimulant in the world. It is the second most traded commodity on the planet, after oil.
7%
Flag icon
It is worth pointing out that caffeine is a stimulant drug. Caffeine is also the only addictive substance that we readily give to our children
9%
Flag icon
Here, also, there are universal indicators that offer a convincing conclusion of sleep—two, in fact. First is the loss of external awareness—you stop perceiving the outside world. You are no longer conscious of all that surrounds you, at least not explicitly. In actual fact, your ears are still “hearing”; your eyes, though closed, are still capable of “seeing.” This is similarly true for the other sensory organs of the nose (smell), the tongue (taste), and the skin (touch). All these signals still flood into the center of your brain, but it is here, in the sensory convergence zone, where that ...more
9%
Flag icon
But while your conscious mapping of time is lost during sleep, at a non-conscious level, time continues to be cataloged by the brain with incredible precision. I’m sure you have had the experience of needing to wake up the next morning at a specific time. Perhaps you had to catch an early-morning flight. Before bed, you diligently set your alarm for 6:00 a.m. Miraculously, however, you woke up at 5:58 a.m., unassisted, right before the alarm. Your brain, it seems, is still capable of logging time with quite remarkable precision while asleep. Like so many other operations occurring within the ...more
9%
Flag icon
Aserinsky had been carefully documenting the eye movement patterns of human infants during the day and night. He noticed that there were periods of sleep when the eyes would rapidly dart from side to side underneath their lids. Furthermore, these sleep phases were always accompanied by remarkably active brainwaves, almost identical to those observed from a brain that is wide awake. Sandwiching these earnest phases of active sleep were longer swaths of time when the eyes would calm and rest still. During these quiescent time periods, the brainwaves would also become calm, slowly ticking up and ...more
9%
Flag icon
At that moment Kleitman and Aserinsky realized the profound discovery they had made: humans don’t just sleep, but cycle through two completely different types of sleep. They named these sleep stages based on their defining ocular features: non–rapid eye movement, or NREM, sleep, and rapid eye movement, or REM, sleep. Together with the assistance of another graduate student of Kleitman’s at the time, William Dement, Kleitman and Aserinsky further demonstrated that REM sleep, in which brain activity was almost identical to that when we are awake, was intimately connected to the experience we ...more
11%
Flag icon
Place your finger between your eyes, just above the bridge of your nose. Now slide it up your forehead about two inches. When you go to bed tonight, this is where most of your deep-sleep brainwaves will be generated: right in the middle of your frontal lobes. It is the epicenter, or hot spot, from which most of your deep, slow-wave sleep emerges. However, the waves of deep sleep do not radiate out in perfect circles. Instead, almost all of your deep-sleep brainwaves will travel in one direction: from the front of your brain to the back. They are like the sound waves emitted from a speaker, ...more
11%
Flag icon
What you are actually experiencing during deep NREM sleep is one of the most epic displays of neural collaboration that we know of. Through an astonishing act of self-organization, many thousands of brain cells have all decided to unite and “sing,” or fire, in time. Every time I watch this stunning act of neural synchrony occurring at night in my own research laboratory, I am humbled: sleep is truly an object of awe.
11%
Flag icon
Realizing that the rhythmic incantare of deep NREM slow-wave sleep was actually a highly active, meticulously coordinated state of cerebral unity, scientists were forced to abandon any cursory notions of deep sleep as a state of semi-hibernation or dull stupor.
11%
Flag icon
By severing perceptual ties with the outside world, not only do we lose our sense of consciousness (explaining why we do not dream in deep NREM sleep, nor do we keep explicit track of time), this also allows the cortex to “relax” into its default mode of functioning. That default mode is what we call deep slow-wave sleep. It is an active, deliberate, but highly synchronous state of brain activity. It is a near state of nocturnal cerebral meditation, though I should note that it is very different from the brainwave activity of waking meditative states.
12%
Flag icon
The steady, slow, synchronous waves that sweep across the brain during deep sleep open up communication possibilities between distant regions of the brain, allowing them to collaboratively send and receive their different repositories of stored experience. In this regard, you can think of each individual slow wave of NREM sleep as a courier, able to carry packets of information between different anatomical brain centers. One benefit of these traveling deep-sleep brainwaves is a file-transfer process. Each night, the long-range brainwaves of deep sleep will move memory packets (recent ...more
12%
Flag icon
Instead, REM sleep brain activity is an almost perfect replica of that seen during attentive, alert wakefulness—the top line in the figure. Indeed, recent MRI scanning studies have found that there are individual parts of the brain that are up to 30 percent more active during REM sleep than when we are awake!
12%
Flag icon
As is the case when you are awake, the sensory gate of the thalamus once again swings open during REM sleep. But the nature of the gate is different. It is not sensations from the outside that are allowed to journey to the cortex during REM sleep. Rather, signals of emotions, motivations, and memories (past and present) are all played out on the big screens of our visual, auditory, and kinesthetic sensory cortices in the brain. Each and every night, REM sleep ushers you into a preposterous theater wherein you are treated to a bizarre, highly associative carnival of autobiographical themes.
12%
Flag icon
Mere seconds before the dreaming phase begins, and for as long as that REM-sleep period lasts, you are completely paralyzed. There is no tone in the voluntary muscles of your body. None whatsoever.
12%
Flag icon
Why did evolution decide to outlaw muscle activity during REM sleep? Because by eliminating muscle activity you are prevented from acting out your dream experience. During REM sleep, there is a nonstop barrage of motor commands swirling around the brain, and they underlie the movement-rich experience of dreams. Wise, then, of Mother Nature to have tailored a physiological straitjacket that forbids these fictional movements from becoming reality, especially considering that you’ve stopped consciously perceiving your surroundings. You can well imagine the calamitous upshot of falsely enacting a ...more
13%
Flag icon
As the geneticist Theodosius Dobzhansky once said, “Nothing in biology makes sense except in light of evolution.”
13%
Flag icon
Every animal species carefully studied to date sleeps, or engages in something remarkably like it. This includes insects, such as flies, bees, cockroaches, and scorpions;I fish, from small perch to the largest sharks;II amphibians, such as frogs; and reptiles, such as turtles, Komodo dragons, and chameleons. Ascend the evolutionary ladder further and we find that all types of birds and mammals sleep: from shrews to parrots, kangaroos, polar bears, bats, and, of course, we humans. Even invertebrates, such as primordial mollusks and echinoderms, and even very primitive worms, enjoy periods of ...more
13%
Flag icon
How “old” does this make sleep? Worms emerged during the Cambrian explosion: at least 500 million years ago. That is, worms (and sleep by association) predate all vertebrate life. This includes dinosaurs, which, by inference, are likely to have slept. Imagine diplodocuses and triceratopses all comfortably settling in for a night of full repose! Regress evolutionary time still further and we have discovered that even some of the very simplest forms of unicellular organisms, such as bacteria, have active and passive phases that correspond to the light-dark cycle of our planet. It is a pattern ...more
13%
Flag icon
It appeared with the very earliest forms of planetary life. Like other rudimentary features, such as DNA, sleep may be a common bond uniting every creature in the animal kingdom.
13%
Flag icon
Elephants need half as much sleep as humans, requiring just four hours of slumber each day. Tigers and lions devour fifteen hours of daily sleep. The brown bat outperforms all other mammals, being awake for just five hours each day while sleeping nineteen hours.
14%
Flag icon
Every species in which we can measure sleep stages experiences NREM sleep—the non-dreaming stage. However, insects, amphibians, fish, and most reptiles show no clear signs of REM sleep—the type associated with dreaming in humans. Only birds and mammals, which appeared later in the evolutionary timeline of the animal kingdom, have full-blown REM sleep. It suggests that dream (REM) sleep is the new kid on the evolutionary block. REM sleep seems to have emerged to support functions that NREM sleep alone could not accomplish, or that REM sleep was more efficient at accomplishing.
14%
Flag icon
When a theme repeats in evolution, and independently across unrelated lineages, it often signals a fundamental need.
15%
Flag icon
Take cetaceans, such as dolphins and whales, for example. Their sleep, of which there is only NREM, can be unihemispheric, meaning they will sleep with half a brain at a time! One half of the brain must always stay awake to maintain life-necessary movement in the aquatic environment.
15%
Flag icon
After this one half of the brain has consumed its fill of sleep, they switch, allowing the previously vigilant half of the brain to enjoy a well-earned period of deep NREM slumber. Even with half of the brain asleep, dolphins can achieve an impressive level of movement and even some vocalized communication.
15%
Flag icon
Surely Mother Nature could have found a way to avoid sleep entirely under the extreme pressure of nonstop, 24/7 aquatic movement. Would that not have been easier than masterminding a convoluted split-shift system between brain halves for sleep, while still allowing for a joint operating system where both sides unite when awake? Apparently not. Sleep is of such vital necessity that no matter what the evolutionary demands of an organism, even the unyielding need to swim in perpetuum from birth to death, Mother Nature had no choice. Sleep with both sides of the brain, or sleep with just one side ...more
15%
Flag icon
The gift of split-brain deep NREM sleep is not entirely unique to aquatic mammals. Birds can do it, too. However, there is a somewhat different, though equally life-preserving, reason: it allows them to keep an eye on things, quite literally. When birds are alone, one half of the brain and its corresponding (opposite-side) eye must stay awake, maintaining vigilance to environmental threats. As it does so, the other eye closes, allowing its corresponding half of the brain to sleep. Things get even more interesting when birds group together. In some species, many of the birds in a flock will ...more
15%
Flag icon
Yet the most incredible feat of deliberate sleep deprivation belongs to that of birds during transoceanic migration. During this climate-driven race across thousands of miles, entire flocks will fly for many more hours than is normal. As a result, they lose much of the stationary opportunity for plentiful sleep. But even here, the brain has found an ingenious way to obtain sleep. In-flight, migrating birds will grab remarkably brief periods of sleep lasting only seconds in duration.
15%
Flag icon
The white-crowned sparrow is an astonishing example of avian sleep deprivation during long-distance flights. This small, quotidian bird is capable of a spectacular feat that the American military has spent millions of research dollars studying. The sparrow has an unparalleled, though time-limited, resilience to total sleep deprivation, one that we humans could never withstand. If you sleep-deprive this sparrow in the laboratory during the migratory period of the year (when it would otherwise be in flight), it suffers virtually no ill effects whatsoever. However, depriving the same sparrow of ...more
16%
Flag icon
As it turns out, we humans are special when it comes to sleep. Compared to Old- and New-World monkeys, as well as apes, such as chimpanzees, orangutans, and gorillas, human sleep sticks out like the proverbial sore thumb. The total amount of time we spend asleep is markedly shorter than all other primates (eight hours, relative to the ten to fifteen hours of sleep observed in all other primates), yet we have a disproportionate amount of REM sleep, the stage in which we dream. Between 20 and 25 percent of our sleep time is dedicated to REM sleep dreaming, compared to an average of only 9 ...more
17%
Flag icon
Sleeping in trees was an evolutionarily wise idea, up to a point. It provided safe haven from large, ground-hunting predators, such as hyenas, and small blood-sucking arthropods, including lice, fleas, and ticks. But when sleeping twenty to fifty feet up in the air, one has to be careful. Become too relaxed in your sleep depth when slouched on a branch or in a nest, and a dangling limb may be all the invitation gravity needs to bring you hurtling down to Earth in a life-ending fall, removing you from the gene pool. This is especially true for the stage of REM sleep, in which the brain ...more
17%
Flag icon
Homo erectus, the predecessor of Homo sapiens, was the first obligate biped, walking freely upright on two legs. We believe that Homo erectus was also the first dedicated ground sleeper. Shorter arms and an upright stance made tree living and sleeping very unlikely. How did Homo erectus (and by inference, Homo sapiens) survive in the predator- rich ground-sleeping environment, when leopards, hyenas, and saber-toothed tigers (all of which can hunt at night) are on the prowl, and terrestrial bloodsuckers abound? Part of the answer is fire. While there remains some debate, many believe that Homo ...more
17%
Flag icon
An evolutionary pressure to become qualitatively more efficient in how we sleep therefore developed. Any Homo erectus capable of accomplishing more efficient sleep would likely have been favored in survival and selection. Evolution saw to it that our ancient form of sleep became somewhat shorter in duration, yet increased in intensity, especially by enriching the amount of REM sleep we packed into the night. In fact, as is so often the case with Mother Nature’s brilliance, the problem became part of the solution. In other words, the act of sleeping on solid ground, and not on a precarious tree ...more
17%
Flag icon
From these clues, I offer a theorem: the tree-to-ground reengineering of sleep was a key trigger that rocketed Homo sapiens to the top of evolution’s lofty pyramid. At least two features define human beings relative to other primates. I posit that both have been beneficially and causally shaped by the hand of sleep, and specifically our intense degree of REM sleep relative to all other mammals: (1) our degree of sociocultural complexity, and (2) our cognitive intelligence. REM sleep, and the act of dreaming itself, lubricates both of these human traits.
18%
Flag icon
Prior to birth, a human infant will spend almost all of its time in a sleep-like state, much of which resembles the REM-sleep state.
19%
Flag icon
Autistic individuals show a 30 to 50 percent deficit in the amount of REM sleep they obtain, relative to children without autism.
19%
Flag icon
Alcohol is one of the most powerful suppressors of REM sleep that we know of.
21%
Flag icon
Sadly, neither society nor our parental attitudes are well designed to appreciate or accept that teenagers need more sleep than adults, and that they are biologically wired to obtain that sleep at a different time from their parents.
23%
Flag icon
Poor memory and poor sleep in old age are therefore not coincidental, but rather significantly interrelated.
« Prev 1 3