More on this book
Community
Kindle Notes & Highlights
Read between
October 23 - November 10, 2022
Babbage’s new idea, which he conceived in 1834, was a general-purpose computer that could carry out a variety of different operations based on programming instructions given to it.
Babbage named this proposed machine the Analytical Engine. He was one hundred years ahead of his time.
This insight would become the core concept of the digital age: any piece of content, data, or information—music, text, pictures, numbers, symbols, sounds, video—could be expressed in digital form and manipulated by machines.
Ada described a sequence of operations and then made a chart showing how each would be coded into the machine. Along the way, she helped to devise the concepts of subroutines (a sequence of instructions that performs a specific task, such as computing a cosine or calculating compound interest, and can be dropped into larger programs as needed) and a recursive loop (a sequence of instructions that repeats itself).
It was not to be. Babbage got no more funding for his machines; they were never built, and he died in poverty. As for Lady Lovelace, she never published another scientific paper. Instead her life spiraled downward, and she became addicted to gambling and opiates. She had an affair with a gambling partner who then blackmailed her, forcing her to pawn her family jewels. During the final year of her life, she fought an exceedingly painful battle with uterine cancer accompanied by constant hemorrhaging. When she died in 1852, at age thirty-six, she was buried, in accordance with one of her last
...more
The Industrial Revolution was based on two grand concepts that were profound in their simplicity. Innovators came up with ways to simplify endeavors by breaking them into easy, small tasks that could be accomplished on assembly lines. Then, beginning in the textile industry, inventors found ways to mechanize steps so that they could be performed by machines, many of them powered by steam engines.
Over the years, Ada Lovelace has been celebrated as a feminist icon and a computer pioneer.
William Whewell, coined the term scientist to suggest the connection among these disciplines. II. Specifically, he wanted to use the method of divided differences to closely approximate logarithmic and trigonometric functions. III. Named after the seventeenth-century Swiss mathematician Jacob Bernoulli, who studied the sums of powers of consecutive integers, they play an intriguing role in number theory, mathematical analysis, and differential topology. IV. Ada’s example involved tabulating polynomials using difference techniques as a subfunction, which required a nested loop structure with a
...more
Using Hollerith’s tabulators, the 1890 census was completed in one year rather than eight. It was the first major use of electrical circuits to process information, and the company that Hollerith founded became in 1924, after a series of mergers and acquisitions, the International Business Machines Corporation, or IBM.
The machines devised by Hollerith and Babbage were digital, meaning they calculated using digits: discrete and distinct integers such as 0, 1, 2, 3. In their machines, the integers were added and subtracted using cogs and wheels that clicked one digit at a time, like counters.
Around the time that Hollerith was building his digital tabulator, Lord Kelvin and his brother James Thomson, two of Britain’s most distinguished scientists, were creating an analog machine.
BLETCHLEY PARK Although few outsiders knew it at the time—and would not know for more than three decades—another electronic computer using vacuum tubes had been secretly built at the end of 1943 on the grounds of a redbrick Victorian manor in the town of Bletchley, fifty-four miles northwest of London, where the British had sequestered a team of geniuses and engineers to break the German wartime codes.
The computer, known as Colossus, was the first all-electronic, partially programmable computer. Because it was geared for a special task, it was not a general-purpose or “Turing-complete” computer, but it did have Alan Turing’s personal fingerprints on it.
Turing was assigned to a team working in Hut 8 that was trying to break the German Enigma code, which was generated by a portable machine with mechanical rotors and electrical circuits. It encrypted military messages by using a cipher that, after every keystroke, changed the formula for substituting letters. That made it so tough to decipher that the British despaired of ever doing so. A break came when Polish intelligence officers created a machine based on a captured German coder that was able to crack some of the Enigma codes. By the time the Poles showed the British their machine, however,
...more
Turing and his team went to work creating a more sophisticated machine, dubbed “the bombe,” that could decipher the improved Enigma messages—in particular, naval orders that would reveal the deployment of U-boats that were decimating British supply convoys. The bombe exploited a variety of subtle weaknesses in the coding, including the fact that no letter could be enciphered as itself and that there were certain phrases the Germans used repeatedly. By August 1940 Turing’s team had two operating bombes, which were able to break 178 coded messages; by the end of the war they had built close to
...more
at Bletchley Park, and Colossus, was a ma...
This highlight has been truncated due to consecutive passage length restrictions.
The need for Colossus arose when the Germans started coding important messages, such as orders from Hitler and his high command, with an electronic digital machine that used a binary system and twelve code wheels of unequal size. The electromechanical bombes designed by Turing were powerless ...
This highlight has been truncated due to consecutive passage length restrictions.
Bletchley Park’s Colossus I, completed in December 1943 by Max Newman and Tommy Flowers (with input from Alan Turing), was the first digital computer that was fully electronic, programmable, and operational.
Among the programming practices that Hopper perfected at Harvard was the subroutine, those chunks of code for specific tasks that are stored once but can be called upon when needed at different points in the main program. “A subroutine is a clearly defined, easily symbolized, often repeated program,” she wrote.
By 1945, thanks largely to Hopper, the Harvard Mark I was the world’s most easily programmable big computer.
IV. In 1967, at age sixty, Hopper was recalled to active duty in the Navy with the mission of standardizing its use of COBOL and validating COBOL compilers. By vote of Congress, she was permitted to extend her tour beyond retirement age. She attained the rank of rear admiral, and finally retired in August 1986 at age seventy-nine as the Navy’s oldest serving officer.
VI. At Christmas 2013 Turing was posthumously granted a formal pardon by Queen Elizabeth II.
More fundamentally, the transistor radio became the first major example of a defining theme of the digital age: technology making devices personal. The radio was no longer a living-room appliance to be shared; it was a personal device that allowed you to listen to your own music where and when you wanted—even if it was music that your parents wanted to ban.

