More on this book
Community
Kindle Notes & Highlights
Read between
January 3 - July 28, 2020
An interesting fact: Whole wheat bread (glycemic index 72) increases blood sugar as much as or more than table sugar, or sucrose (glycemic index 59).
most of all, genetic changes have been induced to increase yield per acre. The average yield on a modern North American farm is more than tenfold greater than farms of a century ago. Such enormous strides in yield have required drastic changes in genetic code, including reducing the proud “amber waves of grain” of yesteryear to the rigid, eighteen-inch-tall high-production “dwarf” wheat of today. Such fundamental genetic changes, as you will see, have come at a price.
Small changes in wheat protein structure can spell the difference between a devastating immune response to wheat protein versus no immune response at all.
The first wild, then cultivated, wheat was einkorn, the great-granddaddy of all subsequent wheat. Einkorn has the simplest genetic code of all wheat, containing only fourteen chromosomes.
Shortly after the cultivation of the first einkorn plant, the emmer variety of wheat, the natural offspring of parents einkorn and an unrelated wild grass, Aegilops speltoides or goatgrass, made its appearance in the Middle East.2 Goatgrass added its genetic code to that of einkorn, resulting in the more complex twenty-eight-chromosome emmer wheat. Plants such as wheat have the ability to retain the sum of the genes of their forebears.
Sometime in the millennia predating Biblical times, twenty-eight-chromosome emmer wheat (Triticum turgidum) mated naturally with another grass, Triticum tauschii, yielding primordial forty-two-chromosome Triticum aestivum, genetically closest to what we now call wheat. Because it contains the sum total of the chromosomal content of three unique plants with forty-two chromosomes, it is the most genetically complex. It is therefore the most genetically “pliable,” an issue that will serve future genetics researchers well in the millennia to come.
Triticum wheat of today is the product of breeding to generate greater yield and characteristics such as disease, drought, and heat resistance. In fact, wheat has been modified by humans to such a degree that modern strains are unable to survive in the wild without human support such as nitrate fertilization and pest control.
But other differences are even more obvious. Modern wheat is much shorter. The romantic notion of tall fields of wheat grain gracefully waving in the wind has been replaced by “dwarf” and “semi-dwarf” varieties that stand barely a foot or two tall, yet another product of breeding experiments to increase yield.
According to Allan Fritz, PhD, professor of wheat breeding at Kansas State University, dwarf and semi-dwarf wheat now comprise more than 99 percent of all wheat grown worldwide.
Wheat gluten proteins, in particular, undergo considerable structural change with hybridization. In one hybridization experiment, fourteen new gluten proteins were identified in the offspring that were not present in either parent wheat plant.6 Moreover, when compared to century-old strains of wheat, modern strains of Triticum aestivum express a higher quantity of genes for gluten proteins that are associated with celiac disease.7 Multiply these alterations by the tens of thousands of hybridizations to which wheat has been subjected and you have the potential for dramatic shifts in genetically
...more
No longer do scientists need to breed strains, cross their fingers, and hope for just the right mix of chromosomal exchange. Instead, single genes can be purposefully inserted or removed, and strains bred for disease resistance, pesticide resistance, cold or drought tolerance, or any number of other genetically determined characteristics. In particular, new strains can be genetically tailored to be compatible with specific fertilizers or pesticides. This is a financially rewarding process for big agribusiness, and seed and farm chemical producers such as Cargill, Monsanto, and ADM, since
...more
Test animals fed glyphosate-tolerant soybeans (known as Roundup Ready, these beans are genetically bred to allow the farmer to freely spray the weed killer Roundup without harming the crop) show alterations in liver, pancreatic, intestinal, and testicular tissue compared to animals fed conventional soybeans. The difference is believed to be due to unexpected DNA rearrangement near the gene insertion site, yielding altered proteins in food with potential toxic effects.
Thus, the alterations of wheat that could potentially result in undesirable effects on humans are not due to gene insertion or deletion, but are due to the hybridization experiments that predate genetic modification. As a result, over the past fifty years, thousands of new strains have made it to the human commercial food supply without a single effort at safety testing.
Modern wheat, despite all the genetic alterations to modify hundreds, if not thousands, of its genetically determined characteristics, made its way to the worldwide human food supply with nary a question surrounding its suitability for human consumption.
Aside from some extra fiber, eating two slices of whole wheat bread is really little different, and often worse, than drinking a can of sugar-sweetened soda or eating a sugary candy bar.
A 1981 University of Toronto study launched the concept of the glycemic index, i.e., the comparative blood sugar effects of carbohydrates: the higher the blood sugar after consuming a specific food compared to glucose, the higher the glycemic index (GI). The original study showed that the GI of white bread was 69, while the GI of whole grain bread was 72 and Shredded Wheat cereal was 67, while that of sucrose (table sugar) was 59.5 Yes, the GI of whole grain bread is higher than that of sucrose.
Pastas are also usually made from Triticum durum rather than aestivum, putting them genetically closer to emmer. But even the favorable GI rating of pasta is misleading, since it is only a two-hour observation and pasta has the curious ability to generate high blood sugars for periods of four to six hours after consumption, sending blood sugars up by 100 mg/dl for sustained periods in people with diabetes.8,
Therefore, wheat products elevate blood sugar levels more than virtually any other carbohydrate, from beans to candy bars.
The higher the blood glucose after consumption of food, the greater the insulin level, the more fat is deposited. This is why, say, eating a three-egg omelet that triggers no increase in glucose does not add to body fat, while two slices of whole wheat bread increases blood glucose to high levels, triggering insulin and growth of fat, particularly abdominal or deep visceral fat.
Trigger high blood sugars repeatedly and/or over sustained periods, and more fat accumulation results. The consequences of glucose-insulin-fat deposition are especially visible in the abdomen—resulting in, yes, wheat belly. The bigger your wheat belly, the poorer your response to insulin, since the deep visceral fat of the wheat belly is associated with poor responsiveness, or “resistance,” to insulin, demanding higher and higher insulin levels, a situation that cultivates diabetes.
While wheat is, by weight, mostly carbohydrate as amylopectin A, gluten protein is what makes wheat “wheat.” Gluten is the unique component of wheat that makes dough “doughy”: stretchable, rollable, spreadable, twistable, baking gymnastics that cannot be achieved with rice flour, corn flour, or any other grain. Gluten allows the pizza maker to roll and toss dough and mold it into the characteristic flattened shape; it allows the dough to stretch and rise when yeast fermentation causes it to fill with air pockets. The distinctive doughy quality of the simple mix of wheat flour and water,
...more
Leavening, the “rising” process created by the marriage of wheat with yeast, does not occur without gluten, and is therefore unique to wheat flour.
People who eliminate wheat from their diet typically report improved mood, fewer mood swings, improved ability to concentrate, and deeper sleep within just days to weeks of their last bite of bagel or baked lasagna.
When people divorce themselves from wheat-containing products, 30 percent experience something that can only be called withdrawal. I’ve personally witnessed hundreds of people report extreme fatigue, mental fog, irritability, inability to function at work or school, even depression in the first several days to weeks after eliminating wheat.
Dr. Christine Zioudrou and her colleagues at the NIH subjected gluten, the main protein of wheat, to a simulated digestive process to mimic what happens after we eat bread or other wheat-containing products.11 Exposed to pepsin (a stomach enzyme) and hydrochloric acid (stomach acid), gluten is degraded to a mix of polypeptides. The dominant polypeptides were then isolated and administered to laboratory rats. These polypeptides were discovered to have the peculiar ability to penetrate the blood-brain barrier that separates the bloodstream from the brain. This barrier is there for a reason: The
...more
Even more telling, the brain effect of gluten-derived polypeptides is blocked by administration of the drug naloxone.
So this is your brain on wheat: Digestion yields morphine-like compounds that bind to the brain’s opiate receptors. It induces a form of reward, a mild euphoria. When the effect is blocked or no exorphin-yielding foods are consumed, some people experience a distinctly unpleasant withdrawal.
In effect, wheat is an appetite stimulant: It makes you want more—more cookies, cupcakes, pretzels, candy, soft drinks. More bagels, muffins, tacos, submarine sandwiches, pizza. It makes you want both wheat-containing and non-wheat-containing foods.
According to the CDC, 34.4 percent of adults are now overweight (BMI of 25 to 29.9) and another 33.9 percent are obese (BMI 30 or greater), leaving less than one in three normal weight.1 Since 1960, the ranks of the obese have grown the most rapidly, nearly tripling over those fifty years.2
Studies conducted during the eighties and since have shown that, when processed white flour products are replaced with whole grain flour products, there is a reduction in colon cancer, heart disease, and diabetes. That is indeed true and indisputable. According to accepted dietary wisdom, if something that is bad for you (white flour) is replaced by something less bad (whole wheat), then lots of that less-bad thing must be great for you. By that logic, if high-tar cigarettes are bad for you and low-tar cigarettes are less bad, then lots of low-tar cigarettes should be good for you. An
...more
The extremes of blood sugar and insulin are responsible for growth of fat specifically in the visceral organs. Experienced over and over again, visceral fat accumulates, creating a fat liver, two fat kidneys, a fat pancreas, fat large and small intestines, as well as its familiar surface manifestation, a wheat belly.
Visceral fat is different. While it might be useful as “love handles” grasped by your partner, it is also uniquely capable of triggering a universe of inflammatory phenomena. Visceral fat filling and encircling the abdomen of the wheat belly sort is a unique, twenty-four-hour-a-day, seven-day-a-week metabolic factory. And what it produces is inflammatory signals and abnormal cytokines, or cell-to-cell hormone signal molecules, such as leptin, resistin, and tumor necrosis factor.4, 5 The more visceral fat present, the greater the quantities of abnormal signals released into the bloodstream.
Visceral fat not only produces abnormally high levels of inflammatory signals but is also itself inflamed, containing bountiful collections of inflammatory white blood cells (macrophages).10 The endocrine and inflammatory molecules produced by visceral fat empty (via the portal circulation draining blood from the intestinal tract) directly into the liver, which then responds by producing yet another sequence of inflammatory signals and abnormal proteins. In other words, in the human body, all fat is not equal. Wheat belly fat is a special fat. It is not just a passive repository for excess
...more
The essential phenomenon that sets the growth of the wheat belly in motion is high blood sugar (glucose). High blood sugar, in turn, provokes high blood insulin. (Insulin is released by the pancreas in response to the blood sugar: The higher the blood sugar, the more insulin must be released to move the sugar into the body’s cells, such as those of the muscle and liver.) When the pancreas’ ability to produce insulin in response to blood sugar rises is exceeded, diabetes develops.
This so-called insulin resistance means that the pancreas must produce greater and greater quantities of insulin to metabolize the sugars. Eventually, a vicious circle of increased insulin resistance, increased insulin production, increased deposition of visceral fat, increased insulin resistance, etc., etc., ensues.
Until menopause, adult females have high levels of estrogen. Surplus estrogen, however, produced by visceral fat adds considerably to breast cancer risk, since estrogen at high levels stimulates breast tissue.11 Thus, increased visceral fat on a female has been associated with an increased risk for breast cancer as high as fourfold.
Males, having only a tiny fraction of the estrogen of females, are sensitive to anything that increases estrogen. The bigger the wheat belly in males, the more estrogen that is produced by visceral fat tissue. Since estrogen stimulates growth of breast tissue, elevated estrogen levels can cause men to develop larger breasts—those dreaded “man boobs,” “man cans,” or, for you professional types, gynecomastia.
An entire industry is growing to help men embarrassed by their enlarged breasts. Male breast reduction surgery is booming, growing nationwide at double-digit rates. Other “solutions” include special clothing, compression vests, and exercise programs.
However, many gluten-free foods are made by replacing wheat flour with cornstarch, rice starch, potato starch, or tapioca starch (starch extracted from the root of the cassava plant). This is especially hazardous for anybody looking to drop twenty, thirty, or more pounds, since gluten-free foods, though they do not trigger the immune or neurological response of wheat gluten, still trigger the glucose-insulin response that causes you to gain weight. Wheat products increase blood sugar and insulin more than most other foods. But remember: Foods made with cornstarch, rice starch, potato starch,
...more
This highlight has been truncated due to consecutive passage length restrictions.
Recent research has fingered wheat gliadin as a trigger of intestinal release of a protein called zonulin, a regulator of intestinal permeability.24 Zonulins have the peculiar effect of disassembling tight junctions, the normally secure barrier between intestinal cells. When gliadin triggers zonulin release, intestinal tight junctions are disrupted, and unwanted proteins such as gliadin and other wheat protein fractions gain entry to the bloodstream. Immune-activating lymphocytes, such as T-cells, are then triggered to begin an inflammatory process against various “self” proteins, thus
...more
If national wheat consumption is averaged across all Americans—babies, children, teenagers, adults, the elderly—the average American consumes 133 pounds of wheat per year. (Note that 133 pounds of wheat flour is equal to approximately 200 loaves of bread, or a bit more than half a loaf of bread per day.) Of course, this means that many adults eat far more than that amount, since no baby or young child included in the averaging process eats 133 pounds of wheat per year.
The early phase of growing visceral fat and diabetes is accompanied by a 50 percent increase in pancreatic beta cells responsible for producing insulin, a physiologic adaptation to meet the enormous demands of a body that is resistant to insulin. But beta cell adaptation has limits. High blood sugars, such as those occurring after a nice cranberry muffin consumed on the car ride to work, provoke the phenomenon of “glucotoxicity,” actual damage to pancreatic insulin–producing beta cells that results from high blood sugars.15 The higher the blood sugar, the more damage to beta cells. The effect
...more
Over time and repeated sucker punches from glucotoxicity, lipotoxicity, and inflammatory destruction, beta cells wither and die, gradually reducing the number of beta cells to less than 50 percent of the normal starting number.17 That’s when diabetes is irreversibly established. In short, carbohydrates, especially those such as wheat products that increase blood sugar and insulin most dramatically, initiate a series of metabolic phenomena that ultimately lead to irreversible loss of the pancreas’s ability to manufacture insulin: diabetes.
As we’ve discussed, foods that increase blood sugar the most also cause diabetes. The sequence is simple: Carbohydrates trigger insulin release from the pancreas, causing growth of visceral fat; visceral fat causes insulin resistance and inflammation. High blood sugars, triglycerides, and fatty acids damage the pancreas. After years of overwork, the pancreas succumbs to the thrashing it has taken from glucotoxicity, lipotoxicity, and inflammation, essentially “burning out,” leaving a deficiency of insulin and an increase in blood glucose—diabetes.
In daily life, the pH of the body is locked at 7.4, thanks to the elaborate control systems in place. By-products of metabolism, such as lactic acid, are acids. Acids drive pH down, triggering a panic mode response from the body to compensate. The body responds by drawing from any alkaline store available, from bicarbonate in the bloodstream to alkaline calcium salts such as calcium carbonate and calcium phosphate in bones. Because maintaining a normal pH is so crucial, the body will sacrifice bone health to keep pH stable.
While pH extremes in either direction are dangerous, the body is happier with a slight alkaline bias. This is subtle and not reflected in blood pH, but evident by such methods as measuring acid and alkaline products in the urine.
Vegetables and fruits, on the other hand, are the dominant alkaline foods in the diet. Virtually everything in your produce department will drive pH toward the alkaline direction. From kale to kohlrabi, generous consumption of vegetables and fruits serve to neutralize the acidic burden from animal products.
The problem comes when you habitually ingest acids in the diet, then draw on calcium stores over and over and over again to neutralize these acids. Though bones have a lot of stored calcium, the supply is not inexhaustible. Bones will eventually become demineralized—i.e., depleted of calcium. That’s when osteopenia (mild demineralization) and osteoporosis (severe demineralization), frailty, and fractures develop.
An excessively acidified diet will eventually show itself as bone fractures. An impressive analysis of the worldwide incidence of hip fracture demonstrated a striking relationship: The higher the ratio of protein intake from vegetables to the protein intake from animal products, the fewer hip fractures occur.8 The magnitude of difference was substantial: While a vegetable-to-animal-protein intake ratio of 1:1 or less was associated with as many as 200 hip fractures per 100,000 population, a vegetable-to-animal-protein intake ratio of between 2:1 and 5:1 was associated with less than 10 hip
...more
Wheat is among the most potent sources of sulfuric acid, yielding more sulfuric acid per gram than any meat.