The Structure of Scientific Revolutions
Rate it:
Open Preview
Read between May 26 - June 15, 2020
2%
Flag icon
The Structure of Scientific Revolutions may be—I do not say is—more relevant to a past epoch in the history of science than it is to the sciences as they are practiced today.
3%
Flag icon
current usage of the word revolution goes far beyond what Kuhn had in mind. This is not a criticism either of Kuhn or of the general public. It does mean that one should read Kuhn attentively and pay attention to what he actually says. Nowadays revolution is pretty much a praise word. Every new refrigerator, every daring new movie, is announced as revolutionary. It is hard to remember that the word was once used sparingly. In the American media (almost forgetful of the American Revolution) the word conveyed more loathing than praise, because revolutionary meant ‘commie.’ I regret the recent ...more
11%
Flag icon
History, if viewed as a repository for more than anecdote or chronology, could produce a decisive transformation in the image of science by which we are now possessed. That image has previously been drawn, even by scientists themselves, mainly from the study of finished scientific achievements as these are recorded in the classics and, more recently, in the textbooks from which each new scientific generation learns to practice its trade. Inevitably, however, the aim of such books is persuasive and pedagogic; a concept of science drawn from them is no more likely to fit the enterprise that ...more
12%
Flag icon
If science is the constellation of facts, theories, and methods collected in current texts, then scientists are the men who, successfully or not, have striven to contribute one or another element to that particular constellation. Scientific development becomes the piecemeal process by which these items have been added, singly and in combination, to the ever growing stockpile that constitutes scientific technique and knowledge. And history of science becomes the discipline that chronicles both these successive increments and the obstacles that have inhibited their accumulation. Concerned with ...more
12%
Flag icon
In recent years, however, a few historians of science have been finding it more and more difficult to fulfil the functions that the concept of development-by-accumulation assigns to them. As chroniclers of an incremental process, they discover that additional research makes it harder, not easier, to answer questions like: When was oxygen discovered? Who first conceived of energy conservation? Increasingly, a few of them suspect that these are simply the wrong sorts of questions to ask. Perhaps science does not develop by the accumulation of individual discoveries and inventions.
12%
Flag icon
historians of science have begun to ask new sorts of questions and to trace different, and often less than cumulative, developmental lines for the sciences. Rather than seeking the permanent contributions of an older science to our present vantage, they attempt to display the historical integrity of that science in its own time.
12%
Flag icon
Observation and experience can and must drastically restrict the range of admissible scientific belief, else there would be no science. But they cannot alone determine a particular body of such belief. An apparently arbitrary element, compounded of personal and historical accident, is always a formative ingredient of the beliefs espoused by a given scientific community at a given time.
13%
Flag icon
when, that is, the profession can no longer evade anomalies that subvert the existing tradition of scientific practice—then begin the extraordinary investigations that lead the profession at last to a new set of commitments, a new basis for the practice of science. The extraordinary episodes in which that shift of professional commitments occurs are the ones known in this essay as scientific revolutions. They are the tradition-shattering complements to the tradition-bound activity of normal science.
13%
Flag icon
the unexpected discovery is not simply factual in its import and why the scientist’s world is qualitatively transformed as well as quantitatively enriched by fundamental novelties of either fact or theory.
13%
Flag icon
Competition between segments of the scientific community is the only historical process that ever actually results in the rejection of one previously accepted theory or in the adoption of another.
14%
Flag icon
‘normal science’ means research firmly based upon one or more past scientific achievements, achievements that some particular scientific community acknowledges for a time as supplying the foundation for its further practice.
14%
Flag icon
many of the famous classics of science fulfilled a similar function. Aristotle’s Physica, Ptolemy’s Almagest, Newton’s Principia and Opticks, Franklin’s Electricity, Lavoisier’s Chemistry, and Lyell’s Geology—these and many other works served for a time implicitly to define the legitimate problems and methods of a research field for succeeding generations of practitioners. They were able to do so because they shared two essential characteristics. Their achievement was sufficiently unprecedented to attract an enduring group of adherents away from competing modes of scientific activity. ...more
14%
Flag icon
The study of paradigms, including many that are far more specialized than those named illustratively above, is what mainly prepares the student for membership in the particular scientific community with which he will later practice. Because he there joins men who learned the bases of their field from the same concrete models, his subsequent practice will seldom evoke overt disagreement over fundamentals. Men whose research is based on shared paradigms are committed to the same rules and standards for scientific practice. That commitment and the apparent consensus it produces are prerequisites ...more
14%
Flag icon
there can be a sort of scientific research without paradigms, or at least without any so unequivocal and so binding as the ones named above. Acquisition of a paradigm and of the more esoteric type of research it permits is a sign of maturity in the development of any given scientific field.
15%
Flag icon
anyone examining a survey of physical optics before Newton may well conclude that, though the field’s practitioners were scientists, the net result of their activity was something less than science.
15%
Flag icon
History suggests that the road to a firm research consensus is extraordinarily arduous.
16%
Flag icon
To be accepted as a paradigm, a theory must seem better than its competitors, but it need not, and in fact never does, explain all the facts with which it can be confronted.
Abhishek Shah liked this
16%
Flag icon
When the individual scientist can take a paradigm for granted, he need no longer, in his major works, attempt to build his field anew, starting from first principles and justifying the use of each concept introduced. That can be left to the writer of textbooks. Given a textbook, however, the creative scientist can begin his research where it leaves off and thus concentrate exclusively upon the subtlest and most esoteric aspects of the natural phenomena that concern his group. And as he does this, his research communiqués will begin to change in ways whose evolution has been too little studied ...more
17%
Flag icon
Both in mathematics and astronomy, research reports had ceased already in antiquity to be intelligible to a generally educated audience. In dynamics, research became similarly esoteric in the later Middle Ages, and it recaptured general intelligibility only briefly during the early seventeenth century when a new paradigm replaced the one that had guided medieval research. Electrical research began to require translation for the layman before the end of the eighteenth century, and most other fields of physical science ceased to be generally accessible in the nineteenth. During the same two ...more
17%
Flag icon
The success of a paradigm—whether Aristotle’s analysis of motion, Ptolemy’s computations of planetary position, Lavoisier’s application of the balance, or Maxwell’s mathematization of the electromagnetic field—is at the start largely a promise of success discoverable in selected and still incomplete examples. Normal science consists in the actualization of that promise, an actualization achieved by extending the knowledge of those facts that the paradigm displays as particularly revealing, by increasing the extent of the match between those facts and the paradigm’s predictions, and by further ...more
20%
Flag icon
Perhaps the most striking feature of the normal research problems we have just encountered is how little they aim to produce major novelties, conceptual or phenomenal.
21%
Flag icon
Though its outcome can be anticipated, often in detail so great that what remains to be known is itself uninteresting, the way to achieve that outcome remains very much in doubt. Bringing a normal research problem to a conclusion is achieving the anticipated in a new way, and it requires the solution of all sorts of complex instrumental, conceptual, and mathematical puzzles. The man who succeeds proves himself an expert puzzle-solver, and the challenge of the puzzle is an important part of what usually drives him on.
21%
Flag icon
The scientific enterprise as a whole does from time to time prove useful, open up new territory, display order, and test long-accepted belief. Nevertheless, the individual engaged on a normal research problem is almost never doing any one of these things. Once engaged, his motivation is of a rather different sort. What then challenges him is the conviction that, if only he is skilful enough, he will succeed in solving a puzzle that no one before has solved or solved so well. Many of the greatest scientific minds have devoted all of their professional attention to demanding puzzles of this ...more
22%
Flag icon
The existence of this strong network of commitments—conceptual, theoretical, instrumental, and methodological—is a principal source of the metaphor that relates normal science to puzzle-solving. Because it provides rules that tell the practitioner of a mature specialty what both the world and his science are like, he can concentrate with assurance upon the esoteric problems that these rules and existing knowledge define for him. What then personally challenges him is how to bring the residual puzzle to a solution. In these and other respects a discussion of puzzles and of rules illuminates the ...more
22%
Flag icon
Rules, I suggest, derive from paradigms, but paradigms can guide research even in the absence of
22%
Flag icon
Despite occasional ambiguities, the paradigms of a mature scientific community can be determined with relative ease.
23%
Flag icon
Scientists can agree that a Newton, Lavoisier, Maxwell, or Einstein has produced an apparently permanent solution to a group of outstanding problems and still disagree, sometimes without being aware of it, about the particular abstract characteristics that make those solutions permanent. They can, that is, agree in their identification of a paradigm without agreeing on, or even attempting to produce, a full interpretation or rationalization of it. Lack of a standard interpretation or of an agreed reduction to rules will not prevent a paradigm from guiding research. Normal science can be ...more
24%
Flag icon
though quantum mechanics (or Newtonian dynamics, or electromagnetic theory) is a paradigm for many scientific groups, it is not the same paradigm for them all. Therefore, it can simultaneously determine several traditions of normal science that overlap without being coextensive. A revolution produced within one of these traditions will not necessarily extend to the others as well.
25%
Flag icon
Though undoubtedly correct, the sentence, “Oxygen was discovered,” misleads by suggesting that discovering something is a single simple act assimilable to our usual (and also questionable) concept of seeing. That is why we so readily assume that discovering, like seeing or touching, should be unequivocally attributable to an individual and to a moment in time. But the latter attribution is always impossible, and the former often is as well.
26%
Flag icon
X-rays, is a classic case of discovery through accident, a type that occurs more frequently than the impersonal standards of scientific reporting allow us easily to realize.
26%
Flag icon
Their pursuit was a standard project for normal science, and success was an occasion only for congratulations, not for surprise.
28%
Flag icon
In science, as in the playing card experiment, novelty emerges only with difficulty, manifested by resistance, against a background provided by expectation. Initially, only the anticipated and usual are experienced even under circumstances where anomaly is later to be observed. Further acquaintance, however, does result in awareness of something wrong or does relate the effect to something that has gone wrong before. That awareness of anomaly opens a period in which conceptual categories are adjusted until the initially anomalous has become the anticipated.
28%
Flag icon
The very fact that a significant scientific novelty so often emerges simultaneously from several laboratories is an index both to the strongly traditional nature of normal science and to the completeness with which that traditional pursuit prepares the way for its own change.
29%
Flag icon
Because it demands large-scale paradigm destruction and major shifts in the problems and techniques of normal science, the emergence of new theories is generally preceded by a period of pronounced professional insecurity. As one might expect, that insecurity is generated by the persistent failure of the puzzles of normal science to come out as they should. Failure of existing rules is the prelude to a search for new ones.
29%
Flag icon
His famous preface still provides one of the classic descriptions of a crisis state.
29%
Flag icon
proliferation of versions of a theory is a very usual symptom of crisis.
30%
Flag icon
Increasingly, the research it guided resembled that conducted under the competing schools of the pre-paradigm period, another typical effect of crisis.
30%
Flag icon
Just as Copernicus’ astronomical proposal, despite the optimism of its author, created an increasing crisis for existing theories of motion, so Maxwell’s theory, despite its Newtonian origin, ultimately produced a crisis for the paradigm from which it had sprung.
30%
Flag icon
These three examples are almost entirely typical. In each case a novel theory emerged only after a pronounced failure in the normal problem-solving activity. Furthermore, except for the case of Copernicus in which factors external to science played a particularly large role, that breakdown and the proliferation of theories that is its sign occurred no more than a decade or two before the new theory’s enunciation. The novel theory seems a direct response to crisis. Note also, though this may not be quite so typical, that the problems with respect to which breakdown occurred were all of a type ...more
31%
Flag icon
History of science indicates that, particularly in the early developmental stages of a new paradigm, it is not even very difficult to invent such alternates. But that invention of alternates is just what scientists seldom undertake except during the pre-paradigm stage of their science’s development and at very special occasions during its subsequent evolution. So long as the tools a paradigm supplies continue to prove capable of solving the problems it defines, science moves fastest and penetrates most deeply through confident employment of those tools. The reason is clear. As in manufacture ...more
31%
Flag icon
once it has achieved the status of paradigm, a scientific theory is declared invalid only if an alternate candidate is available to take its place.
31%
Flag icon
the act of judgment that leads scientists to reject a previously accepted theory is always based upon more than a comparison of that theory with the world. The decision to reject one paradigm is always simultaneously the decision to accept another, and the judgment leading to that decision involves the comparison of both paradigms with nature and with each other.
32%
Flag icon
Though history is unlikely to record their names, some men have undoubtedly been driven to desert science because of their inability to tolerate crisis. Like artists, creative scientists must occasionally be able to live in a world out of joint—elsewhere I have described that necessity as “the essential tension” implicit in scientific research.2 But that rejection of science in favor of another occupation is, I think, the only sort of paradigm rejection to which counterinstances by themselves can lead. Once a first paradigm through which to view nature has been found, there is no such thing as ...more
32%
Flag icon
there is no such thing as research without counterinstances. For what is it that differentiates normal science from science in a crisis state? Not, surely, that the former confronts no counterinstances. On the contrary, what we previously called the puzzles that constitute normal science exist only because no paradigm that provides a basis for scientific research ever completely resolves all its problems. The very few that have ever seemed to do so (e.g., geometric optics) have shortly ceased to yield research problems at all and have instead become tools for engineering.
32%
Flag icon
There are, I think, only two alternatives: either no scientific theory ever confronts a counterinstance, or all such theories confront counterinstances at all times.
32%
Flag icon
How, then, to return to the initial question, do scientists respond to the awareness of an anomaly in the fit between theory and nature? What has just been said indicates that even a discrepancy unaccountably larger than that experienced in other applications of the theory need not draw any very profound response. There are always some discrepancies. Even the most stubborn ones usually respond at last to normal practice. Very often scientists are willing to wait, particularly if there are many problems available in other parts of the field.
32%
Flag icon
It follows that if an anomaly is to evoke crisis, it must usually be more than just an anomaly. There are always difficulties somewhere in the paradigm-nature fit; most of them are set right sooner or later, often by processes that could not have been foreseen. The scientist who pauses to examine every anomaly he notes will seldom get significant work done. We therefore have to ask what it is that makes an anomaly seem worth concerted scrutiny, and to that question there is probably no fully general answer.
33%
Flag icon
When, for these reasons or others like them, an anomaly comes to seem more than just another puzzle of normal science, the transition to crisis and to extraordinary science has begun.
33%
Flag icon
An even more important source of change is the divergent nature of the numerous partial solutions that concerted attention to the problem has made available. The early attacks upon the resistant problem will have followed the paradigm rules quite closely. But with continuing resistance, more and more of the attacks upon it will have involved some minor or not so minor articulation of the paradigm, no two of them quite alike, each partially successful, but none sufficiently so to be accepted as paradigm by the group. Through this proliferation of divergent articulations (more and more ...more
33%
Flag icon
explicit recognitions of breakdown are extremely rare, but the effects of crisis do not entirely depend upon its conscious recognition. What can we say these effects are? Only two of them seem to be universal. All crises begin with the blurring of a paradigm and the consequent loosening of the rules for normal research.
« Prev 1