The Structure of Scientific Revolutions
Rate it:
Open Preview
Read between May 26 - June 15, 2020
33%
Flag icon
all crises close in one of three ways. Sometimes normal science ultimately proves able to handle the crisis-provoking problem despite the despair of those who have seen it as the end of an existing paradigm. On other occasions the problem resists even apparently radical new approaches. Then scientists may conclude that no solution will be forthcoming in the present state of their field. The problem is labelled and set aside for a future generation with more developed tools. Or, finally, the case that will most concern us here, a crisis may end with the emergence of a new candidate for paradigm ...more
35%
Flag icon
Almost always the men who achieve these fundamental inventions of a new paradigm have been either very young or very new to the field whose paradigm they change.15 And perhaps that point need not have been made explicit, for obviously these are the men who, being little committed by prior practice to the traditional rules of normal science, are particularly likely to see that those rules no longer define a playable game and to conceive another set that can replace them.
36%
Flag icon
To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
36%
Flag icon
cumulative acquisition of novelty is not only rare in fact but improbable in principle.
37%
Flag icon
predecessors. It is hard to see how new theories could arise without these destructive changes in beliefs about nature. Though logical inclusiveness remains a permissible view of the relation between successive scientific theories, it is a historical implausibility.
40%
Flag icon
paradigms provide scientists not only with a map but also with some of the directions essential for map-making. In learning a paradigm the scientist acquires theory, methods, and standards together, usually in an inextricable mixture. Therefore, when paradigms change, there are usually significant shifts in the criteria determining the legitimacy both of problems and of proposed solutions.
40%
Flag icon
In so far as their only recourse to that world is through what they see and do, we may want to say that after a revolution scientists are responding to a different world.
43%
Flag icon
What occurs during a scientific revolution is not fully reducible to a reinterpretation of individual and stable data. In the first place, the data are not unequivocally stable. A pendulum is not a falling stone, nor is oxygen dephlogisticated air. Consequently, the data that scientists collect from these diverse objects are, as we shall shortly see, themselves different. More important, the process by which either the individual or the community makes the transition from constrained fall to the pendulum or from dephlogisticated air to oxygen is not one that resembles interpretation. How could ...more
45%
Flag icon
postrevolutionary science invariably includes many of the same manipulations, performed with the same instruments and described in the same terms, as its prerevolutionary predecessor. If these enduring manipulations have been changed at all, the change must lie either in their relation to the paradigm or in their concrete results. I now suggest, by the introduction of one last new example, that both these sorts of changes occur.
47%
Flag icon
Textbooks, however, being pedagogic vehicles for the perpetuation of normal science, have to be rewritten in whole or in part whenever the language, problem-structure, or standards of normal science change. In short, they have to be rewritten in the aftermath of each scientific revolution, and, once rewritten, they inevitably disguise not only the role but the very existence of the revolutions that produced them. Unless he has personally experienced a revolution in his own lifetime, the historical sense either of the working scientist or of the lay reader of textbook literature extends only to ...more
48%
Flag icon
a persistent tendency to make the history of science look linear or cumulative, a tendency that even affects scientists looking back at their own research. For example, all three of Dalton’s incompatible accounts of the development of his chemical atomism make it appear that he was interested from an early date in just those chemical problems of combining proportions that he was later famous for having solved. Actually those problems seem only to have occurred to him with their solutions, and then not until his own creative work was very nearly complete.1 What all of Dalton’s accounts omit are ...more
48%
Flag icon
Newton wrote that Galileo had discovered that the constant force of gravity produces a motion proportional to the square of the time. In fact, Galileo’s kinematic theorem does take that form when embedded in the matrix of Newton’s own dynamical concepts. But Galileo said nothing of the sort. His discussion of falling bodies rarely alludes to forces, much less to a uniform gravitational force that causes bodies to fall.2 By crediting to Galileo the answer to a question that Galileo’s paradigms did not permit to be asked, Newton’s account hides the effect of a small but revolutionary ...more
48%
Flag icon
Because they aim quickly to acquaint the student with what the contemporary scientific community thinks it knows, textbooks treat the various experiments, concepts, laws, and theories of the current normal science as separately and as nearly seriatim as possible. As pedagogy this technique of presentation is unexceptionable. But when combined with the generally unhistorical air of science writing and with the occasional systematic misconstructions discussed above, one strong impression is overwhelmingly likely to follow: science has reached its present state by a series of individual ...more
This highlight has been truncated due to consecutive passage length restrictions.
48%
Flag icon
Every elementary chemistry text must discuss the concept of a chemical element. Almost always, when that notion is introduced, its origin is attributed to the seventeenth-century chemist, Robert Boyle, in whose Sceptical Chymist the attentive reader will find a definition of ‘element’ quite close to that in use today. Reference to Boyle’s contribution helps to make the neophyte aware that chemistry did not begin with the sulfa drugs; in addition, it tells him that one of the scientist’s traditional tasks is to invent concepts of this sort. As a part of the pedagogic arsenal that makes a man a ...more
This highlight has been truncated due to consecutive passage length restrictions.
51%
Flag icon
Max Planck, surveying his own career in his Scientific Autobiography, sadly remarked that “a new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it.”
52%
Flag icon
paradigm debates are not really about relative problem-solving ability, though for good reasons they are usually couched in those terms. Instead, the issue is which paradigm should in the future guide research on problems many of which neither competitor can yet claim to resolve completely. A decision between alternate ways of practicing science is called for, and in the circumstances that decision must be based less on past achievement than on future promise.
53%
Flag icon
part of our difficulty in seeing the profound differences between science and technology must relate to the fact that progress is an obvious attribute of both fields.
54%
Flag icon
Does a field make progress because it is a science, or is it a science because it makes progress?
54%
Flag icon
Scientific progress is not different in kind from progress in other fields, but the absence at most times of competing schools that question each other’s aims and standards makes the progress of a normal-scientific community far easier to see.
54%
Flag icon
the individual scientist to concentrate his attention upon problems that he has good reason to believe he will be able to solve. Unlike the engineer, and many doctors, and most theologians, the scientist need not choose problems because they urgently need solution and without regard for the tools available to solve them. In this respect, also, the contrast between natural scientists and many social scientists proves instructive. The latter often tend, as the former almost never do, to defend their choice of a research problem—e.g., the effects of racial discrimination or the causes of the ...more
55%
Flag icon
only the civilizations that descend from Hellenic Greece have possessed more than the most rudimentary science. The bulk of scientific knowledge is a product of Europe in the last four centuries. No other place and time has supported the very special communities from which scientific productivity comes.
Yogarshi
Such a narrow world view...
56%
Flag icon
even when that has occurred and a new candidate for paradigm has been evoked, scientists will be reluctant to embrace it unless convinced that two all-important conditions are being met. First, the new candidate must seem to resolve some outstanding and generally recognized problem that can be met in no other way. Second, the new paradigm must promise to preserve a relatively large part of the concrete problem-solving ability that has accrued to science through its predecessors. Novelty for its own sake is not a desideratum in the sciences as it is in so many other creative fields. As a ...more
66%
Flag icon
This book, however, was intended also to make another sort of point, one that has been less clearly visible to many of its readers. Though scientific development may resemble that in other fields more closely than has often been supposed, it is also strikingly different. To say, for example, that the sciences, at least after a certain point in their development, progress in a way that other fields do not, cannot have been all wrong, whatever progress itself may be. One of the objects of the book was to examine such differences and begin accounting for them. Consider, for example, the ...more
« Prev 1 2 Next »