Physics of the Future: How Science Will Shape Human Destiny and Our Daily Lives by the Year 2100
Rate it:
Open Preview
7%
Flag icon
Today, we can communicate with the Internet via our computers and cell phones. But in the future, the Internet will be everywhere—in wall screens, furniture, on billboards, and even in our glasses and contact lenses. When we blink, we will go online. There are several ways we can put the Internet on a lens. The image can be flashed from our glasses directly through the lens of our eyes and onto our retinas. The image could also be projected onto the lens, which would act as a screen. Or it might be attached to the frame of the glasses, like a small jeweler’s lens. As we peer into the glasses, ...more
7%
Flag icon
red, green, and blue laser light are shone directly onto the retina. With a 120-degree field of view and a resolution of 1600 × 1,200 pixels, the VRD display can produce a brilliant, lifelike image that is comparable to that seen in a motion picture theater. The image can be generated using a helmet, goggles, or glasses.
8%
Flag icon
He foresees that one immediate application of this technology might be to help diabetics regulate their glucose levels. The lens will display an immediate readout of the conditions within their body.
8%
Flag icon
By inserting some pattern-recognition software into these Internet glasses, they will also recognize objects and even some people’s faces. Already, some software programs can recognize preprogrammed faces with better than 90 percent accuracy. Not just the name, but the biography of the person you are talking to may flash before you as you speak. At a meeting this will end the embarrassment of bumping into someone you know whose name you can’t remember.
8%
Flag icon
Your glasses may also have a tiny video camera in the frame, so it can film your surroundings and then broadcast the images directly onto the Internet. People around the world may be able to share in your experiences as they happen. Whatever you are watching, thousands of others will be able to see it as well.
8%
Flag icon
The eye and the optic nerve transmit information at a rate exceeding a high-speed Internet connection. So an Internet contact lens offers perhaps the most efficient and rapid access to the brain.
8%
Flag icon
An LED can produce a dot, or pixel, of light, but you have to add a microlens so that it focuses directly onto the retina. The final image would appear to float about two feet away from you. A more advanced design that Parviz is considering is to use microlasers to send a supersharp image directly onto the retina. With the same technology used in the chip industry to carve out tiny transistors, one can also etch tiny lasers of the same size, making the smallest lasers in the world. Lasers that are about 100 atoms across are in principle possible using this technology.
8%
Flag icon
It was a sleek sports car, modified by the engineers at North Carolina State University so that it became fully autonomous. Its computers had the power of eight PCs.
9%
Flag icon
FOUR WALL SCREENS
10%
Flag icon
Already, MRI machines, which weigh several tons and can fill up an entire room, have been miniaturized to about a foot, and will eventually be as small as a cell phone. By passing one over your body, you will be able to see inside your organs. Computers will process these 3-D images and then give you a diagnosis. This probe will also be able to determine, within minutes, the presence of a wide variety of diseases, including cancer, years before a tumor forms. This probe will contain DNA chips, silicon chips that have millions of tiny sensors that can detect the presence of the telltale DNA of ...more
12%
Flag icon
Internet contact lenses will recognize people’s faces, display their biographies, and translate their words as subtitles. Tourists will use them to resurrect ancient monuments. Artists and architects will use them to manipulate and reshape their virtual creations. The possibilities are endless for augmented reality. (photo credit 1.2)
12%
Flag icon
For example, a tourist walking in a museum can go from exhibit to exhibit as your contact lens gives you a description of each object; a virtual guide will give you a cybertour as you pass. If you are visiting some ancient ruins, you will be able to “see” complete reconstructions of the buildings and monuments in their full glory, along with historical anecdotes. The remains of the Roman Empire, instead of being broken columns and weeds, will spring back to life as you wander among them, complete with commentary and notes.
12%
Flag icon
If you are a soldier in the field, your goggles or headset may give you all the latest information, maps, enemy locations, direction of enemy fire, instructions from superiors, etc. In a firefight with the enemy, when bullets are whizzing by from all directions, you will be able to see through obstacles and hills and locate the enemy, since drones flying overhead can identify their positions.
13%
Flag icon
Although once considered to be unrealistically futuristic, versions of the universal translator already exist. This means that in the future, if you are a tourist in a foreign country and talk to the locals, you will see subtitles in your contact lens, as if you were watching a foreign-language movie. You can also have your computer create an audio translation that is fed into your ears. This means that it may be possible to have two people carry on a conversation, with each speaking in their own language, while hearing the translation in their ears, if both have the universal translator. The ...more
13%
Flag icon
The field is called CAT (computer assisted translation).
13%
Flag icon
But the most advanced version of 3-D will be holograms. Without using any glasses, you would see the precise wave front of a 3-D image, as if it were sitting directly in front of you.
13%
Flag icon
Holograms are made by taking a single laser beam and splitting it in two. One beam falls on the object you want to photograph, which then bounces off and falls onto a special screen. The second laser beam falls directly onto the screen. The mixing of the two beams creates a complex interference pattern containing the “frozen” 3-D image of the original object, which is then captured on a special film on the screen. Then, by flashing another laser beam through the screen, the image of the original object comes to life in full 3-D.
14%
Flag icon
One possibility is a screen shaped like a cylinder or dome that you sit inside. When the holographic image is flashed onto the screen, we see the 3-D images surrounding us, as if they were really there.
14%
Flag icon
It’s been known since 1875 that the brain is based on electricity moving through its neurons, which generates faint electrical signals that can be measured by placing electrodes around a person’s head. By analyzing the electrical impulses picked up by these electrodes, one can record the brain waves. This is called an EEG (electroencephalogram), which can record gross changes in the brain, such as when it is sleeping, and also moods, such as agitation, anger, etc. The output of the EEG can be displayed on a computer screen, which the subject can watch.
15%
Flag icon
“Can we tap into the thoughts of others? … I don’t think that’s pure science fiction, but it would create a hell of a world. Imagine courting a mate if your thoughts could be read, or negotiating a contract if your thoughts could be read.” Most of the time, he speculates, mind reading will have some embarrassing but not disastrous consequences. He writes, “I am told that if you stop a professor’s lecture in midstream … a significant fraction [of the students] are involved in erotic fantasies.”
15%
Flag icon
But at the very least, an fMRI scanner might function as a primitive lie detector. Telling a lie causes more centers of the brain to light up than telling the truth. Telling a lie implies that you know the truth but are thinking of the lie and its myriad consequences, which requires much more energy than telling the truth. Hence, the fMRI brain scan should be able to detect this extra expenditure of energy.
20%
Flag icon
This field is called heuristics, that is, following a formal, rule-based system. When we need to plan a vacation, we will talk to the face in the wall screen and give it our preferences for the vacation: how long, where to, which hotels, what price range. The expert system will already know our preferences from past experiences and then contact hotels, airlines, etc., and give us the best options.
20%
Flag icon
Perhaps the most practical application will be in medical care. For example, at the present time if you feel sick, you may have to wait hours in an emergency room before you see a doctor. In the near future, you may simply go to your wall screen and talk to robodoc. You will be able to change the face, and even the personality, of the robodoc that you see with the push of a button. The friendly face you see in your wall screen will ask a simple set of questions: How do you feel? Where does it hurt? When did the pain start? How often does it hurt?
20%
Flag icon
In the West, children may scream in terror at robots, especially after seeing so many movies about rampaging killing machines. But to Japanese children, robots are seen as kindred spirits, playful and helpful. In Japan, it is not uncommon to see robot receptionists greet you when you enter department stores. In fact, 30 percent of all commercial robots in the world are in Japan.
21%
Flag icon
It resembles ASIMO, except that it can grab a violin, sway with the music, and then delicately play complex violin pieces. The sound is amazingly realistic and the robot can make grand gestures like a master musician. Although the music is not yet at the level of a concert violinist, it is good enough to entertain audiences.
21%
Flag icon
In Pinocchio, a wooden puppet wished to become a real boy. In the Wizard of Oz, the Tin Man wished for a heart. And in Star Trek: The Next Generation, Data the android tried to master emotions by telling jokes and figuring out what makes us laugh.
21%
Flag icon
At every turn, Spock and Data have exhibited emotions: they have made a long series of value judgments. They decided that being an officer is important, that it is crucial to perform certain tasks, that the goal of the Federation is a noble one, that human life is precious, etc. So it is an illusion that you can have an officer devoid of emotions.
22%
Flag icon
For example, there is a gene from jellyfish that can make green fluorescent protein. Also, there are a variety of molecules like rhodopsin that respond when light is shone upon them by allowing ions to pass through cell membranes. In this way, shining light on these organisms can trigger certain chemical reactions.
23%
Flag icon
I had a chance to visit this monster computer when I toured the Lawrence Livermore National Laboratory in California, where they design hydrogen warheads for the Pentagon. It is America’s premier top-secret weapons laboratory, a sprawling, 790-acre complex in the middle of farm country, budgeted at $1.2 billion per year and employing 6,800 people. This is the heart of the U.S. nuclear weapons establishment. I had to pass through many layers of security to see it, since this is one of the most sensitive weapons laboratories on earth. Finally, after passing a series of checkpoints, I gained ...more
24%
Flag icon
A large part of the problem with these scenarios is that there is no universal consensus as to the meaning of the word consciousness. Philosophers and mathematicians have grappled with the word for centuries, and have nothing to show for it. Seventeenth-century thinker Gottfried Leibniz, inventor of calculus, once wrote, “If you could blow the brain up to the size of a mill and walk about inside, you would not find consciousness.” Philosopher David Chalmers has even catalogued almost 20,000 papers written on the subject, with no consensus whatsoever. Nowhere in science have so many devoted so ...more
26%
Flag icon
In friendly AI, by contrast, robots are free to murder and commit mayhem. There are no rules that enforce an artificial morality. Rather, these robots are designed from the very beginning to desire to help humans rather than destroy them. They choose to be benevolent.
27%
Flag icon
One method is to directly insert the silicon chip into the retina of the person and attach the chip to the retina’s neurons. Another is to connect the chip to a special cable that is connected to the back of the skull, where the brain processes vision.
27%
Flag icon
Instead of tediously learning how to move arms and legs of metal, people will treat these mechanical appendages as if they were real, feeling every nuance of the limbs’ movements via electronic feedback mechanisms.
28%
Flag icon
In the next stage, he sees merging silicon and living cells not just to cure the ailments of the body but to slowly enhance our capabilities. For example, if today’s cochlear and retinal implants can restore hearing and vision, tomorrow’s may also give us superhuman abilities. We would be able to hear sounds that only dogs can hear, or see UV, infrared, and X-rays.
28%
Flag icon
In the ultimate scenario, we discard our clumsy bodies entirely and eventually evolve into pure software programs that encode our personalities. We “download” our entire personalities into a computer. If someone presses a button with your name on it, then the computer behaves as if you are inside its memory, since it has encoded all your personality quirks inside its circuits. We become immortal, but spend our time trapped inside a computer, interacting with other “people” (that is, other software programs) in some gigantic cyberspace/virtual reality. Our bodily existence will be discarded, ...more
30%
Flag icon
Historically, medicine has gone through at least three major stages. In the first, which lasted for tens of thousands of years, medicine was dominated by superstition, witchcraft, and hearsay.
30%
Flag icon
The second stage of medicine began in the nineteenth century, with the coming of the germ theory and better sanitation.
30%
Flag icon
The third stage of medicine is molecular medicine. We are seeing the merger of physics and medicine, reducing medicine to atoms, molecules, and genes.
30%
Flag icon
It will list all your approximately 25,000 genes; it will be your “owner’s manual.”
30%
Flag icon
Within a few decades, the price of sequencing all your genes may cost less than $100, no more expensive than a standard blood test.
30%
Flag icon
Quake became the eighth person in the world to have his genome fully sequenced. He had a personal interest in this project as well, since he scanned his personal genome for evidence of heart disease. Unfortunately, his genome indicated that he inherited one version of a gene associated with heart disease. “You have to have a strong stomach when you look at your own genome,” he lamented.
31%
Flag icon
A doctor extracted some blood from my arm; sent it to the laboratory at Vanderbilt University; and then, two weeks later, a CD-ROM came back in the mail, listing thousands of my genes. Holding this disk in my hands gave me a funny feeling, knowing that it contained a partial blueprint for my body. In principle, this disk could be used to create a reasonable copy of myself. But it also piqued my curiosity, since the secrets of my body were contained on that CD-ROM. For example, I could see if I had a particular gene that increased my chances of getting Alzheimer’s disease. I was concerned, ...more
31%
Flag icon
Also, four of my genes were matched with the genome of thousands of people around the world, who had also had their genes analyzed. Then, the locations of the individuals who had a perfect match with my four genes were placed on a map of the earth. By analyzing the dots on the map of the earth, I could see a long trail of dots, originating near Tibet and then stretching through China and to Japan. It was amazing that this trail of dots traced the ancient migration patterns of my mother’s ancestors, going back thousands of years. My ancestors left no written records of their ancient migration, ...more
31%
Flag icon
So far, scientists can grow skin, blood, blood vessels, heart valves, cartilage, bone, noses, and ears in the lab from your own cells.
31%
Flag icon
Tissue engineering grows new organs by first extracting a few cells from your body. These cells are then injected into a plastic mold that looks like a sponge shaped in the form of the organ in question. The plastic mold is made of biodegradable polyglycolic acid. The cells are treated with certain growth factors to stimulate cell growth, causing them to grow into the mold. Eventually, the mold disintegrates, leaving behind a perfect organ.
34%
Flag icon
By midcentury, many think, gene therapy will be a standard method of treating a variety of genetic diseases. Much of the success that scientists have had in animal studies will eventually be translated into human studies.
35%
Flag icon
Genesis 3:22, the Bible reads, “Behold, the man is become as one of us, to know good and evil: and now, lest he put forth his hand, and take also of the tree of life, and eat, and live for ever.”
36%
Flag icon
The buildup of these genetic errors is a by-product of the second law of thermodynamics: total entropy (that is, chaos) always increases. This is why rusting, rotting, decaying, etc., are universal features of life. The second law is inescapable. Everything, from the flowers in the field to our bodies and even the universe itself, is doomed to wither and die.
36%
Flag icon
Likewise, genetic analysis shows that aging is concentrated in the “engine” of the cell, the mitochondria, or the cell’s power plant.
36%
Flag icon
By 2050, it might be possible to slow down the aging process via a variety of therapies, for example, stem cells, the human body shop, and gene therapy to fix aging genes. We could live to be 150 or older. By 2100, it might be possible to reverse the effects of aging by accelerating cell repair mechanisms to live well beyond that.
« Prev 1