Scientists prove key aspect of evolutionary theory
Photo credit: Steffen Dietzel/Wikipedia
By Phys.org
Evolutionary theory predicts that pairs of chromosomes within asexual organisms will evolve independently of each other and become increasingly different over time in a phenomenon called the ‘Meselson effect’.
While this event was first predicted almost twenty years ago, evidence for it has proved elusive.
Now, researchers from the University of Glasgow have demonstrated the Meselson effect for the first time in any organism at a genome-wide level, studying a parasite called Trypanosoma brucei gambiense (T.b. gambiense). Their findings are to be published in the journal eLife. The research was conducted at the Wellcome Trust Centre for Molecular Parasitology in the University’s Institute of Biodiversity Animal Health and Comparative Medicine.
T.b. gambiense is responsible for causing African sleeping sickness in humans, leading to severe symptoms including fever, headaches, extreme fatigue, and aching muscles and joints, which do not occur until weeks or sometimes even months after infection.
These symptoms extend to neurologic problems, such as progressive confusion and personality changes, when the infection invades the central nervous system.
In order to demonstrate the Meselson effect in T.b. gambiense, the research team, led by Dr. Annette Macleod, sequenced the genomes of 85 isolates of the parasite, including multiple samples from disease focus points within Guinea, Cote d’Ivoire and Cameroon, collected over fifty years from 1952 to 2004.
The similarity of the genomes studied from these different locations, together with a lack of recombination in the evolution of the parasite, suggests that this sub-species emerged from a single individual within the last 10,000 years.
Continue reading by clicking the name of the source below.
ريتشارد دوكنز's Blog
- ريتشارد دوكنز's profile
- 106 followers
