Several new studies, technologies provide insights into epilepsy control, surgical targets
Three studies to be presented at the American Epilepsy Society’s (AES) 69th Annual Meeting describe novel devices and technologies that could reshape current understanding of the complex mechanisms underpinning seizure development in the brain.
Two of the three studies unveil information about the neural networks that produce and propagate seizure activity, providing information that could help refine and target surgical interventions.
In the first study, (abstract 2.076|A.05) researchers from the University of Pennsylvania describe an array of transparent electrodes that can capture high-resolution images of neuronal activity in a live animal brain while simultaneously gathering electrophysiological information about neuron function.
The team previously demonstrated the technology in a single graphene electrode affixed to laboratory samples of brain tissue. According to the authors, graphene is an ideal material because of its flexibility, high electrical conductivity and opportunity to customize features on its surface.
Now, the researchers describe their use of novel nanofabrication techniques to construct graphene-based neural arrays for recording and stimulation. Experiments in live, anesthetized rats revealed that the electrodes are capable of recording epileptiform activity with a high signal-to-noise ratio, high spatial and temporal resolution, and without light-induced artifacts.
To continue reading the entire article and all three studies, click the name of the source below.
ريتشارد دوكنز's Blog
- ريتشارد دوكنز's profile
- 106 followers
