Sorry, Einstein. Quantum Study Suggests ‘Spooky Action’ Is Real.
Image Credit: Frank Auperle/Delft University of Technology
By JOHN MARKOFF
In a landmark study, scientists at Delft University of Technology in the Netherlands reported that they had conducted an experiment that they say proved one of the most fundamental claims of quantum theory — that objects separated by great distance can instantaneously affect each other’s behavior.
The finding is another blow to one of the bedrock principles of standard physics known as “locality,” which states that an object is directly influenced only by its immediate surroundings. The Delft study, published Wednesday in the journal Nature, lends further credence to an idea that Einstein famously rejected. He said quantum theory necessitated “spooky action at a distance,” and he refused to accept the notion that the universe could behave in such a strange and apparently random fashion.
Einstein was deeply unhappy with the uncertainty introduced by quantum theory and described its implications as akin to God’s playing dice.
But since the 1970s, a series of precise experiments by physicists are increasingly erasing doubt — alternative explanations that are referred to as loopholes — that two previously entangled particles, even if separated by the width of the universe, could instantly interact.
The new experiment, conducted by a group led by Ronald Hanson, a physicist at the Dutch university’s Kavli Institute of Nanoscience, and joined by scientists from Spain and England, is the strongest evidence yet to support the most fundamental claims of the theory of quantum mechanics about the existence of an odd world formed by a fabric of subatomic particles, where matter does not take form until it is observed and time runs backward as well as forward.
The researchers describe their experiment as a “loophole-free Bell test” in a reference to an experiment proposed in 1964 by the physicist John Stewart Bell as a way of proving that “spooky action at a distance” is real.
“These tests have been done since the late ’70s but always in the way that additional assumptions were needed,” Dr. Hanson said. “Now we have confirmed that there is spooky action at distance.”
According to the scientists, they have now ruled out all possible so-called hidden variables that would offer explanations of long-distance entanglement based on the laws of classical physics.
The Delft researchers were able to entangle two electrons separated by a distance of 1.3 kilometers, slightly less than a mile, and then share information between them. Physicists use the term “entanglement” to refer to pairs of particles that are generated in such a way that they cannot be described independently. The scientists placed two diamonds on opposite sides of the Delft University campus, 1.3 kilometers apart.
Each diamond contained a tiny trap for single electrons, which have a magnetic property called a “spin.” Pulses of microwave and laser energy are then used to entangle and measure the “spin” of the electrons.
“I think this is a beautiful and ingenious experiment and it will help to push the entire field forward,” said David Kaiser, a physicist at M.I.T., who was not involved in the study. However, Dr. Kaiser, who is with another group of physicists who are preparing to perform an even more ambitious experiment next year that will soon measure light captured at the far edges of the universe, also said he did not think every scintilla of doubt had been erased by the Dutch experiment.
Continue reading by clicking the name of the source below.
ريتشارد دوكنز's Blog
- ريتشارد دوكنز's profile
- 106 followers
