Why String Theory Still Offers Hope We Can Unify Physics
Illustration by John Hersey
By Brian Greene
In October 1984 I arrived at Oxford University, trailing a large steamer trunk containing a couple of changes of clothing and about five dozen textbooks. I had a freshly minted bachelor’s degree in physics from Harvard, and I was raring to launch into graduate study. But within a couple of weeks, the more advanced students had sucked the wind from my sails. Change fields now while you still can, many said. There’s nothing happening in fundamental physics.
Then, just a couple of months later, the prestigious (if tamely titled) journal Physics Letters B published an article that ignited the first superstring revolution, a sweeping movement that inspired thousands of physicists worldwide to drop their research in progress and chase Einstein’s long-sought dream of a unified theory. The field was young, the terrain fertile and the atmosphere electric. The only thing I needed to drop was a neophyte’s inhibition to run with the world’s leading physicists. I did. What followed proved to be the most exciting intellectual odyssey of my life.
That was 30 years ago this month, making the moment ripe for taking stock: Is string theory revealing reality’s deep laws? Or, as some detractors have claimed, is it a mathematical mirage that has sidetracked a generation of physicists?
***
Unification has become synonymous with Einstein, but the enterprise has been at the heart of modern physics for centuries. Isaac Newton united the heavens and Earth, revealing that the same laws governing the motion of the planets and the Moon described the trajectory of a spinning wheel and a rolling rock. About 200 years later, James Clerk Maxwell took the unification baton for the next leg, showing that electricity and magnetism are two aspects of a single force described by a single mathematical formalism.
The next two steps, big ones at that, were indeed vintage Einstein. In 1905, Einstein linked space and time, showing that motion through one affects passage through the other, the hallmark of his special theory of relativity. Ten years later, Einstein extended these insights with his general theory of relativity, providing the most refined description of gravity, the force governing the likes of stars and galaxies. With these achievements, Einstein envisioned that a grand synthesis of all of nature’s forces was within reach.
Read the full article by clicking the name of the source located below.
ريتشارد دوكنز's Blog
- ريتشارد دوكنز's profile
- 106 followers
