How we got to now
My review of Steven Johnson's book How We Got To Now appeared in the Times:
The meteorologist Edward Lorenz famously asked, in the title of
a lecture in 1972: “does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?”, and the phrase “the butterfly effect”
entered the language. If Steven Johnson’s book How We
Got to Nowcatches on — and it deserves to — then the
“humming bird effect” will also become common parlance.
Humming birds exist because flowers needed to find a way to
spread pollen over long distances, and they invented nectar to
attract insects. Birds were not part of the deal at all until much
later. That the evolutionary emergence of flowers would lead to a
radical redesign of the anatomy of some birds could not have been
foreseen.
Likewise, the history of human innovation is riddled with
examples of unexpected consequences of new technologies. As Johnson
tells it, Gutenberg made printed books cheap, which triggered a
rise in literacy, which created a market for spectacles, which led
to the invention of microscopes and telescopes, which led to the
discovery that the earth went round the sun. Then, during the
American Civil War, the Union blockade of southern ports led to a
shortage of ice, which created a market for the newly invented
refrigeration machine, which later enabled a man named Clarence
Birdseye to get very rich after inventing flash-frozen food. The
invention of the railway led to the standardisation of time. The
invention of flash photography led to campaigns for improving the
living conditions in New York tenements.
Johnson is one of the world’s best chroniclers of innovation and
in this book he brings a plethora of insights to the history of
glass, refrigeration, sound, hygiene, time and light. The
unintended consequences, for good and ill, that follow each
innovation form only one of these insights.
He points out that inventions are nearly always “ripe” or
inevitable in the sense that many people come up with the same idea
around the same time. The basic idea behind the light bulb, for
example, occurred to more than 20 different people; Edison proved
best at turning it into a business success mainly because he
understood that innovation is about bringing together different
ideas and skills.
From this Johnson then draws the conclusion that “the more we
build up vast repositories of scientific and technological
understanding, the more we conceal them”. For instance, your
ability to tell the time today depends on somebody understanding
how electrons circulate within cesium atoms; the knowledge of how
to send signals to satellites; the ability to trigger steady
vibrations in blocks of silicon dioxide; and much more. None of
which you need to know as you glance at your watch or
smartphone.
Johnson is a fluent writer and knows the value of telling
stories about people to bring history to life. Inventors make for a
rich cast of characters. This book is written to accompany a
television series, which is perhaps why it consists of a series of
discreet episodes, but they all illustrate similar themes, so the
whole hangs together well.
In the telling, the history of technology has tended to be the
poor relation of the history of science. Brilliant geniuses had
great ideas and clumsy tradesmen put them into action. Johnson is
one of a new breed of authors who are turning this upside down by
showing just how independent of science most innovation was. More
often than not it enabled science, rather than sprang from it.
And compared with political and military history, the history of
innovation is not just “one damned thing after another”; it
chronicles genuine, irreversible and magnificent changes in
society. Take the story of a New Jersey doctor named John Leal who
got a job managing water supplies for Jersey City and set out to do
something to make them safe. In secret, without permission and
against the law, he decided to try adding a strong poison called
calcium hyperchlorite, a procedure known as “chlorination” today.
When dilute, it killed bacteria but not people. Fortunately he got
the dose right and nobody died. Interrogated in court, he adamantly
insisted that his experiment had worked, that Jersey City’s water
was now the safest in the world and that he was not in it for the
money: his refusal to patent it led to the adoption of chlorination
all over the world. The court agreed and exonerated him of
wrongdoing.
The impact of Leal’s innovation was extraordinary. Between 1900
and 1930 chlorination cut total mortality in the average American
city by 43 per cent and infant mortality by 74 per cent. Almost
nothing has done more to reduce misery. Chlorination went on to
make swimming pools safe and popular which led, Johnson argues, to
changes in fashion, reinventing attitudes towards how much of the
shape of the female body could be revealed in polite society. A
hummingbird effect.
Matt Ridley's Blog
- Matt Ridley's profile
- 2180 followers
