Ligaments – 3 Articles

More Than Half of All ACL Reconstructions Could Be Avoided, Five-Year Follow-Up Study Shows

(From RehabDeb: This report is from human medical research, however animal studies are currently being conducted at Colorado State University. When I began animal rehab in 2005, I developed some protocol for people to use to benefit their animals if they did not want surgery for their pet, even though I was working at the time in a surgery specialty hospital. When I began independent practice in 2007, I took years of accumulated research, experience, and knowledge and created some simple functional exercise and drill protocol that has benefited hundreds of my canine patients whose people opted to not pursue surgery. That protocol and some other papers citing surgery text recommendations may be found elsewhere on this site-see the index to the right. In every case where my protocol has been followed (and there are no extenuating circumstances), the pets have stabilized the joint with muscle and scar tissue, and they have functioned very well. This work is all done in the home environment with no dependence on specialized equipment…no need when we are drawing from centuries of known exercise physiology and dynamic principles of body function. Blessings-)


Jan. 30, 2013 — In the summer of 2010, researchers from Lund University in Sweden reported that 60 per cent of all anterior cruciate ligament (ACL) reconstructions could be avoided in favour of rehabilitation. The results made waves around the world, and were met with concerns that the results would not hold up in the long term. Now the researchers have published a follow-up study that confirms the results from 2010 and also show that the risk of osteoarthritis and meniscal surgery is no higher for those treated with physiotherapy alone.


“We have continued with our study and for the first time are able to present a five-year follow-up on the need for and results of ACL surgery as compared with physiotherapy. The findings have been published in the British Medical Journal and are basically unchanged from 2010. This will no doubt surprise many people, as we have not seen any difference in the incidence of osteoarthritis,” says Richard Frobell, one of the researchers behind the study, who is an associate professor at Lund University and a clinician at the orthopaedic department, Helsingborg Hospital.


Richard Frobell explains that the research group’s results from 2010, which were published in the New England Journal of Medicine, caused a stir and questions were raised as to whether it was possible to say that an operation would not be needed in the long term.


Half of the patients who were randomly assigned not to undergo reconstructive surgery have had an operation in the five years since, after experiencing symptoms of instability.


“In this study, there was no increased risk of osteoarthritis or meniscal surgery if the ACL injury was treated with physiotherapy alone compared with if it was treated with surgery. Neither was there any difference in patients’ experiences of function, activity level, quality of life, pain, symptoms or general health,” says Richard Frobell.


“The new report shows that there was no difference in any outcome between those who were operated on straight away, those who were operated on later and those who did not have an operation at all. The message to the medical experts who are treating young, active patients with ACL injuries is that it may be better to start by considering rehabilitation rather than operating straight away.”


In Sweden, over 5 000 people every year suffer an anterior cruciate ligament injury — mainly young people involved in sport. There are different schools of treatment and Sweden stands out with treatment that is in line with the results of the study.


“On an international front, almost all of those with ACL injuries are operated on. In Sweden, just over half are operated on, but in southern Sweden we have been working for many years to use advanced rehabilitation training as the first method of treatment. Our research so far has confirmed that we are right in not choosing to operate on these injuries immediately. Longer-term follow-up is important, however, if we are to look more closely at the development of osteoarthritis in particular,” says Richard Frobell.


The research group, whose study is called KANON, Knee ACL NON-operative versus operative treatment, is now moving on to the next stage. This year, the third part of the study will begin, following up the patients ten years after anterior cruciate ligament injury.


Richard Frobell has also entered into a collaboration with researchers at the School of Economics and Management at Lund University to evaluate the health economics aspects of different treatment methods for ACL injury.


Journal References:



R. B. Frobell, H. P. Roos, E. M. Roos, F. W. Roemer, J. Ranstam, L. S. Lohmander. Treatment for acute anterior cruciate ligament tear: five year outcome of randomised trialBMJ, 2013; 346 (jan24 1): f232 DOI:10.1136/bmj.f232
Richard B. Frobell, Ewa M. Roos, Harald P. Roos, Jonas Ranstam, L. Stefan Lohmander. A Randomized Trial of Treatment for Acute Anterior Cruciate Ligament Tears.New England Journal of Medicine, 2010; 363 (4): 331 DOI:10.1056/NEJMoa0907797

From ScienceDaily



Resistance Training and the Older Adult

From the American College of Sports Medicine


Comments and Position Statements


(and, yes, most of the ideas outlined here may be adapted, and have been by me, for functional animal rehab–RehabDeb)


“The health benefits of appropriately prescribed long-term (more than 12 weeks) resistance training in older adults–ages 65 and older–are well known. They include improvements in muscle strength and endurance; other possible health benefits include increase in muscle mass, which translates into improvements in functional capacity. In addition, increased weight bearing with resistance training is considered beneficial in improving bone density and combating the effects of osteoporosis.


Achieving appropriate levels of function is very important for older adults so they are able to carry out most of the daily living skills necessary to lead independent lives. Due to the fact that muscle wasting (sarcopenia) and weakness, exacerbated by physical inactivity, is prevalent in the aging population, more emphasis has been placed on developing resistance-training programs for older adults. When developing resistance-training programs for this group, important components to consider are the various training-related variables: frequency, duration, exercises, sets, intensity, repetitions, and progression.


Older adults often have orthopedic issues that contraindicate resistance training of the affected joint(s). Older adults are also at a higher risk of cardiovascular disease, and in many cases have even been diagnosed with it. Therefore, it is critical that the older adult receive prior approval from their physician before participating in resistance training. It should be noted that proper supervision of the individual’s resistance-training program, including any testing procedures, by an appropriately trained exercise professional, is highly recommended. It should also be noted that performing maximum strength testing in many older adults is not recommended. Therefore, when strength testing is appropriate, sub-maximum testing protocols for estimating maximum strength are recommended.

Frequency refers to the number of exercise sessions per week. The traditional recommendation for frequency is to engage in three training sessions per week for individuals primarily seeking improvement in their overall health and fitness capacity. Even though some individuals may be motivated to train more frequently, resistance-training studies with the elderly have indicated a range of two to four days per week to be effective and adequate in improving strength. So the recommendation is that the older individual train at least two days per week but no more than four, suggesting an average training frequency of three days per week. Also, the frequency of exercise should be structured so that there is at least 48 hours between training sessions. An individual could satisfy this requirement with a “total body” routine, meaning that they would exercise all of the chosen muscle groups during each training session two or three days per week. Another approach could be a “split” routine where some of the chosen muscle groups are exercised on one or two days a week while the remaining are exercised on a separate one or two days. This “split” routine approach may not be appropriate for those older individuals who are just beginning their program.

Duration describes the length of each training session. In reference to training duration, longer training sessions are not necessarily more effective. If one has an appropriately designed program based on sound training variables, lengthy training sessions are not necessary. In fact, older adults should avoid lengthy training sessions, because they may increase the risk of injury, manifested by extreme fatigue. Present guidelines for resistance training in older adults recommend a range of approximately 20-45 minutes per session. In other words, one should attempt to train for at least 20 but no longer than 45 minutes. This range suggests an approximate average duration of 30 minutes per session.


Exercise may be categorized as either multi-joint, meaning more than one joint is dynamically involved to perform the exercise (e.g., bench press, shoulder press, leg press), or uni-joint, meaning only one joint is dynamically involved (e.g., bicep curls, triceps extensions, leg extensions). In the older adult, the resistance-training program should focus primarily on multi-joint exercises. Uni-joint exercises are not discouraged entirely but should not make up the majority of exercises within the training program.

Additionally, machines are recommended over free weights (i.e., barbells and dumbbells) due to skill-related and safety factors. As the individual progresses, they can use free-weight exercises appropriate for their level of skill, training status and functional capacity.


Traditionally, muscle groups are classified as the following: 1) chest, 2) shoulders, 3) arms, 4) back, 5) abdomen, and 6) legs. Specifically, the chest group contains the pectoral muscles, the shoulder group contains the deltoid, rotator cuff, scapular stabilizers and trapezius muscles, the arm group contains the biceps, triceps, and forearm muscles, the back group contains the latissimus dorsi of the upper back and the erector muscles of the lower back, the abdomen group contains the rectus abdominis, oblique, and intercostals muscles, and the leg group contains the hip (gluteals), thigh (quadriceps), and hamstring muscles. In the older adult, it is important to attempt to incorporate all six of these muscle groups into the comprehensive resistance-training program.


It has been recommended that one to two exercises per muscle group is normally adequate. Noteworthy here is to understand that by employing primarily multi-joint exercises in the resistance training program one may actually exercise more than one muscle group or specific muscle per exercise. For example, in performing the leg press exercise the quadriceps, hamstrings, and gluteal muscles are all involved and, in many cases, this could eliminate the need to perform any uni-joint exercises for those particular muscles.

If a person is performing both multi-joint and uni-joint exercises for a particular muscle group, it is recommended that the multi-joint exercise(s) be performed before the uni-joint exercise. Additionally, within each resistance-training workout, larger muscle groups (i.e., legs, back, and chest) should be worked before smaller muscle groups (i.e., arms and shoulders).


Studies have shown improvements in muscle strength employing ranges of one to three sets of each exercise during the training program. Based on current guidelines, it would be recommended that the individual start with one set of each exercise and, depending on individual need, possibly progress up to no more than three sets when the fitness professional deems it appropriate. It should be noted, however, that an average of two sets of each exercise would be beneficial for most individuals. To avoid excess fatigue, a two-to-three minute rest period between sets and exercises is recommended.


Intensity refers to the amount of weight being lifted, and is a critical component of the resistance-training program, considered by many fitness professionals to be the most important training-related variable for inducing improvements in muscle strength and function. In other words, the more weight lifted, the more strength gained. Even though this may not always be the case, the importance of intensity in facilitating strength improvements is well documented. Intensity is often expressed as a percentage of the maximum amount of weight that can be lifted for a given exercise (1RM). For example, if someone who has a maximum effort of 100 pounds on the bench press exercise performs a set with 80 pounds, they would be training at 1RM of 80%. Studies have suggested that older individuals are able to tolerate higher intensities of exercise, up to 85%.


However, research has also shown intensities ranging from 65%-75% of maximum to significantly increase muscle strength. Therefore, in order to increase strength while simultaneously decreasing the risk of musculoskeletal injury that often accompanies higher intensities of resistance training, a low-intensity to moderate-intensity range of 65%-75% is recommended.


Repetitions (reps) refer to the number of times an individual performs a complete movement of a given exercise. There is an inverse relationship between intensity and repetitions, indicating that as the intensity increases the repetitions should decrease. Based on previous research, a rep continuum has been established that demonstrates the number of repetitions possible at a given relative intensity. For example, an intensity of 60% relates to 16-20 reps, 65% = 14-15 reps, 70% = 12-13 reps, 75% = 10-11 reps, 80% = 8-9 reps, 85% = 6-7 reps, 90% = 4-5 reps, 95% = 2-3 reps, and 100% = 1 rep. In view of the previously mentioned recommendations for an intensity of 65%-75% of maximum, this would suggest that for each training exercise the individual perform an adequate amount of weight that would allow for 10-15 reps. In the event that no initial strength testing was performed, simply through trial-and-error an individual could determine appropriate training loads that would allow them to perform only 10-15 reps. They could then be sure of training at 65%-75% of maximum effort.


In order to continually enjoy improvements in strength and functional capacity, it is important to consistently incorporate progression and variation into the resistance-training program. Progressing and varying one’s program commonly involves incorporating the overload principle. The overload principle involves making adjustments to the training variables of the resistance-training program such as frequency, duration, exercises for each muscle group, number of exercise for each muscle group, sets and repetitions. In terms of adjustment, normally the overload principle involves making increases to these variables. For example, making progressive increases in intensity has been shown to be important in increasing muscle strength. In terms of the rate of progression, one should consider attempting to progress their resistance-training program on a monthly basis. However, it should be noted that increasing the intensity in some older adults may be contraindicated due to orthopedic and/or other medical limitations. As a result, making adjustments in other training variables would be recommended.”

Written for the American College of Sports Medicine by Darryn S. Willoughby, Ph.D., CSCS, FACSM


Fighting Foot Drop

From Advance Journal for Human Physical Therapy

My (RehabDeb) Comment:

“Brown prepares patients for challenges met in the community and at home by having patients walk on foam mats in the clinic and then on various surfaces outside.”

Employing these techniques in animal-other-than-human rehab is what I do and is highly successful here, as well–proprioceptive training that can also build nerve strength :) For dogs and cats, I utilize Orthovet footbed splints and Thera-Paws Dorsi-Flex Assist boots on a case-by-case basis.


The Foot Drop Fight

Early treatment and compliance with a home exercise program are essential.

By Rebecca Mayer Knutsen


Posted on: December 20, 2012


Foot drop, a general term for difficulty lifting the front part of the foot, can be a temporary or permanent condition. The condition signals an underlying neurological, muscular or anatomical problem.


A patient with foot drop due to weakness or paralysis may exhibit behavior such as scuffing her toes along the ground. Or she may develop a high-stepping gait so her foot does not catch on the floor as she walks.


Beyond the obvious frustrations and limitations that accompany this condition, these patients are at greater risk for falls. According to physical therapists, early treatment and patient commitment to a prescribed home exercise program is often the best approach for patients with this gait abnormality.


Gaining Control


The source of foot drop is most commonly a central neurological impairment such as stroke, multiple sclerosis or traumatic brain injury or a peripheral injury such as nerve damage stemming from knee replacement surgery.


“Controlling foot drop through strengthening, orthotics or a functional electrical stimulation foot drop system may address the instability of the ankle, limit the possibility of catching the toe during gait and increase safety and stability to decrease the potential of falls,” said Gregory A. Thomas, PT, physical therapy supervisor, Rehabilitation Center at Eastern Idaho Regional Medical Center in Idaho Falls, ID.


Therapists must conduct a thorough PT evaluation that includes a complete patient history and an assessment of range of motion, strength, sensation, spasticity, reflexes and mobility. Treatment varies depending upon the cause and presentation of the foot drop. Treatment options range from therapeutic exercises including ROM, stretching and/or strengthening to electrical stimulation and gait training.


“The first thing I do with a patient is determine if the dysfunction is central or peripheral,” explained Douglas O. Brown, PT, CSCS, manager of Raub Rehabilitation, Sailfish Point Rehabilitation and Riverside Physical Therapy, all part of Martin Health System in Stuart, FL. “Is it a brain injury such as stroke or MS?” Brown asked. “Or is it a pinched nerve in back or leg or damage from a hip surgery?”


Once the origin of the foot drop has been determined, Brown must determine if the patient is flaccid with no movement whatsoever. “If so, then the outcome /prognosis will not be as good as someone who exhibits some movement,” he shared.


According to Thomas, PT exercises for this patient population include range of motion exercises for knees and ankles and strengthening leg muscles with resistance exercises. And, stretching exercises are particularly important to prevent the development of stiffness in the heel.


“There are no exercises that are off limits to these patients as long as the ankle is stable during the exercise,” Thomas explained. “The exercises can be closed chained or open depending on the level of stability.”


“We have to focus on restoring normal movement patterns but also on stability,” Brown said. “Can the patient stand on one leg without swaying back and forth? It’s important that we remember the static part because these patients function on different surfaces in real life.”


Archive ImageA

Brown prepares patients for challenges met in the community and at home by having patients walk on foam mats in the clinic and then on various surfaces outside.


“If my patient’s goal is to be able to walk the beach in her bare feet, then we need to work on uneven surfaces,” Brown said.


The therapists need to understand a patient’s case 100 percent and treat each one as an individual. These patients need to be assessed on their own merits, according to Brown. “If I have a patient with a traumatic ankle injury from being run over by a car, then I may stay away from certain load bearing exercises,” he shared.


Enter the AFO


If a patient does not have functional use of his muscles, then an ankle foot orthosis (AFO) can be used to keep the ankle at 90 degrees and prevent the foot from dropping toward the ground, thereby creating a more even and normal gait.


The type of AFO used depends on each patient’s specific needs. Some of the types most commonly used include solid ankle, articulated ankle and posterior leaf spring and are most typically made of polypropylene. Articulated ankles allow for some ankle motion, dorsiflexion assist and partial push-off during gait and solid ankle AFOs are rigid and more appropriate if the ankle and/or knee are unstable. Patients typically need to wear a larger shoe size to accommodate these types of AFOs.


“As a physical therapist, I need to realistically fulfill the goal of a patient, which in the case of foot drop, is most typically to stop using an AFO,” Brown explained. “But there are other issues to consider aside from the annoyance of the device. I may need to worry about comorbidities such as diabetes and how the AFO may be causing skin breakdown.”


Brown aims to improve his patients’ optimum function and quality of life while decreasing the fall risk. “Once a patient tells me his goals, I need to determine if they are realistic,” he told ADVANCE.


The goal of physical therapy with these patients is to use the least restrictive device, according to Thomas. “If there is active movement at the ankle and we can strengthen it back to normal, then a temporary brace can be used for support and to increase safety,” he stated. “If the foot drop is more long standing, a custom fitted AFO may be needed.”


In the last 10 years or so, AFOs have improved in quality and function, according to Brown. In fact, he says, some AFOs are made of carbon fiber and elicit a dynamic action instead of keeping the foot rigid while going through the swing phase of gait.


Another option is a foot drop system that applies electrical stimulation in a precise sequence, which then activates the muscles and nerves to lift the foot and bend or extend the knee. This type of device assists with a more natural gait, reeducates muscles, reduces muscle loss, maintains or improves range of motion and increases local blood circulation.


The foot drop device allows a flexible ankle during gait to obtain a more normal walking pattern. A good alternative to bracing, the device’s gait sensor adapts to changes in walking speed and terrain, allowing the patient to walk easily on stairs, grass and carpet.


Brown recently treated a 37-year-old woman with early stages of MS. He put the FES foot drop system on her and it helped her walk normally for the first time in years, bringing tears to her eyes.


“FES can help patients develop great gait patterns and fire muscles,” Brown observed. “FES shows the potential for improvement and the patient can rent the device themselves to wear all day instead of an AFO. The technology is helpful but the device isn’t for everyone. There is a better response with central foot drop as opposed to peripheral lesions.”


The device works well when the peripheral nerve is intact. Patients with a peripheral nerve injury-from diabetes or trauma-who have no palpable muscle contractions may not see improvements. “If the damage is peripheral nerve, then a FES foot drop system will not work in correcting foot drop and a passive AFO system will have to be used,” Thomas shared.


If the patient’s spinal cord has been interrupted in any way, then retraining the muscles would be a very difficult-and maybe even impossible-endeavor.


An AFO remains the appropriate solution for patients with lower-extremity edema, unstable ankle stance or cognitive impairments that interfere with operation of a foot drop system.


Complying at Home


For this condition, patients typically go to therapy for about 45 minutes, two times a week, according to Thomas. “If a patient is going to make gains, however, it’s imperative that there is good compliance with a home exercise program,” he shared. “The patients who have the greatest success are the ones with a solid work ethic outside the clinic.”


Brown’s approach to ensure compliance with a home program begins with the patient’s first evaluation. “I tell them how important the home program is and that participation is crucial,” he shared. “I put them on the spot and I go through the exercises the first day and then send them home with illustrations. I say I will quiz them during the beginning of the next session and will ask them to demonstrate the exercises I assigned.”


With this approach, Brown knows whether or not they’ve followed through based on their familiarity with the exercises. “I give additional exercises and instruction during each session,” he said. “And that’s how I make sure that they are compliant. It usually works because patients come prepared because they don’t want to fail.”


When it comes to foot drop-and really any PT-related injury or diagnosis-Brown stresses the importance of seeking care with a physical therapist as soon as possible. “I don’t want to see someone with foot drop after 6 months,” he stated. “Once a patient is medically stable and safe to treat, they need to be sent to PT.”


Brown recalls seeing a patient with foot drop after having a stroke one and a half years earlier. “There was a lot less I could do for her compared with what I could have done right after her stroke,” he said. “It’s crucial to treat these patients as soon as possible with exercise, stretching and weight bearing.”


Rebecca Mayer Knutsen is senior regional editor of ADVANCE and can be reached atrmayer@advanceweb.com.


Filed under: RESEARCH CITATIONS (NOT EXHAUSTIVE :))
 •  0 comments  •  flag
Share on Twitter
Published on November 09, 2013 11:27
No comments have been added yet.