NF really is consistent
About eighteen months ago, I noted here that a project was underway to verify Randall Holmes’s rather impenetrable claimed proof of the consistency of NF, using the Lean proof verification system.
The project has now been completed by Sky Wilshaw, a Part III student in Cambridge, building on the earlier work of some other students. Here is a new paper by Holmes and Wilshaw explaining the proof in its current version. The introduction reads:
We are presenting an argument for the consistency of Quine’s set theory New Foundations (NF). The consistency of this theory relative to the usual systems of set theory has been an open question since the theory was proposed in 1937, with added urgency after Specker showed in 1954 that NF disproves the Axiom of Choice. Jensen showed in 1969 that NFU (New Foundations with extensionality weakened to allow urelements) is consistent and in fact consistent with Choice (and also with Infinity and with further strong axioms of infinity).
The first author showed the equiconsistency of NF with the quite bizarre system TTT (tangled type theory) in 1995, which gave a possible approach to a consistency proof. Since 2010, the first author has been attempting to write out proofs, first of the existence of a tangled web of cardinals in Mac Lane set theory … and then directly of the existence of a model of tangled type theory. These proofs are difficult to read, insanely involved, and involve the sort of elaborate bookkeeping which makes it easy to introduce errors every time a new draft is prepared. The second author (with the assistance of others initially) has formally verified the proof of the first author of the existence of a model of TTT, and so of the consistency of New Foundations, in the Lean proof verification system, and in the process has suggested minor corrections and considerable formal improvements to the argument originally proposed by the first author. The second author reports that the formalized proof is still difficult to read and insanely involved with nasty bookkeeping. Both authors feel that there ought to be a simpler approach, but the existing argument at least strongly resists attempts at simplification.
‘Quite bizarre system’, ‘insanely involved with nasty bookkeeping’ eh? There have been rather more inviting introductions to papers! But still, an insanely intricate and messy but verified-in-Lean proof of consistency relative to a fragment of ZFC is a consistency proof.
My strong impression, however, is that the general lack of love for NF among set-theorists hasn’t latterly been really grounded in lively doubts about its consistency. So I rather suspect that, even though the proof resolves a very long-standing open problem, its wider impact might be quite modest. Still, all credit to Randall Holmes for having brought his proof project to a successful outcome.
The post NF really is consistent appeared first on Logic Matters.