Gödel Without Tears, slowly, 9

Today’s chapter is about ‘Expressing and capturing the primitive recursive functions’. We prove (in reasonable detail) that although the language of basic arithmetic L_A only has the successor, addition and multiplication functions built in, we can in fact form a L_A wff to express any primitive recursive function we pick. And then we prove (or rather, wave our arms at a proof) that even the weak Robinson Arithmetic can reprsent or ‘capture’ every primitive recursive function.


Even cutting lots of corners, this chapter is inevitably a bit fiddly. But one nice idea we meet is the use of a coding device for handling finite sequences of numbers. I try to make clear (a) how having such a device will enable us to express/capture primitive recursive functions, while (b) distinguishing the neat general coding idea from Gödel’s particular implementation of the device using his beta function.


The post Gödel Without Tears, slowly, 9 appeared first on Logic Matters.

 •  0 comments  •  flag
Share on Twitter
Published on September 10, 2020 23:30
No comments have been added yet.