Conditionals again

Here are two draft chapters on conditionals for the second edition of my Introduction to Formal Logic (to replace chapters 14 and 15 of the current edition). I’ve got to the point that I’d very much welcome comments. Note, there will be added exercises which will further explore e.g. the biconditional and further oddities of equating ‘if’ and ‘⊃’.


The main changes? I no longer endorse Jackson’s theory in the way I used to do.  So what positive line do I take? How do I sell the blasted material conditional?





… even if it turns out that ‘⊃’ is not a close analysis of ordinary ‘if’, we can still adopt it to serve as an easily managed, elegantly simple, substitute in formal languages for the messier vernacular conditional. We hereby do so!


In fact, this is exactly how the material conditional was introduced by Frege, the founding father of modern logic, in his Begriffsschrift. Frege’s aim was to construct a formal language in which mathematical reasoning, in particular, could be represented entirely clearly and unambiguously – and for him, such clarity requires departing from “the peculiarities of ordinary language” as he calls them, while capturing some essential logical content. Choice of notation apart, the central parts of Frege’s formal apparatus including the material conditional, together with his basic logical principles (bar one), turn out to be exactly what mathematicians need.


That’s why modern mathematicians – who do widely use logical notation for clarificatory purposes – often introduce the material conditional in text books, and then cheerfully say (in a Fregean spirit) that this tidy notion is what they are officially going to mean by ‘if’. It serves them perfectly in formally regimenting their theories (e.g. in giving axioms for formal arithmetic or set theory). And the rules that the material conditional obeys – like (MP) and (CP) – are just the rules that mathematicians already use in reasoning with conditionals. Much more about this in due course.








This gives us, then, more than enough reason to continue exploring the material conditional. For we will want to investigate what happens when we adopt ‘⊃’ as a ‘clean’ substitute for the conditional in our formal languages, one which serves the central purposes for which we want conditionals, at least in contexts such as mathematics.


For more, do please have a look at the two quite short chapters (I guess anyone teaching or indeed learning logic will have views on the material conditional — I’m trying to be pretty anodyne, so would like to know if I upset too many readers!). As I say, all comments will be most gratefully received.

 •  0 comments  •  flag
Share on Twitter
Published on January 29, 2017 15:32
No comments have been added yet.