Quantum mechanics – a new lease of life

“It’s not quantum mechanics” may often be heard, a remark informing the listener that whatever they are concerned about is nowhere near as difficult, as abstruse, as complicated as quantum mechanics. (Alternatively, of course, it is often said to be not rocket science or not brain surgery). Indeed to non-physicists or non-mathematicians quantum mechanics must seem virtually impossible to appreciate – pages of incomprehensible algebra buttressed by obscure or frankly paradoxical “explanations”. They may ask “What does the theory actually mean?”


What is more surprising is that even those celebrated for solving quantum mechanical problems may also say that they don’t know what the theory means, at least in terms of providing some understanding or picture in space and time. Taken at face value, quantum theory provides only a statistical account of the results of measurements, and no description at all of the physical system, before or after or in the absence of measurement.


The person most responsible for convincing physicists of this doctrine was Niels Bohr, one of the most important physicists of the twentieth century. Set against him in a famous debate of the 1920-30s was Albert Einstein. Einstein’s best-known complaint about this view of quantum mechanics is “God does not play dice” and rejected the statistical nature of the measurement results, but he was more concerned about the lack of any picture or even description of the system between measurements, lack of realism as it is often put.


With two younger colleagues, Boris Podolsky and Nathan Rosen, in 1935 Einstein produced the famous EPR argument, based on entanglement – the demonstration that the wave-function of two particles may be so correlated that the behaviour of each is totally dependent on that of the other. Their argument showed that unless realism is restored, the Universe must be non-local, so that a “cause” may have an immediate “effect” at a different point in space, apparently violating Einstein’s own special theory of relativity. Not surprisingly, Einstein opted for realism and locality – local realism – in opposition to Bohr.


However, Einstein’s ideas were fairly comprehensively rejected (except by Erwin Schrödinger, one of the founders of quantum theory, and his famous “cat” argument which backed up Einstein’s views). Application of quantum mechanics proceeded with enormous success before and also well after World War II, both scientifically in predicting the behaviour of a wide range of important systems, and commercially – in particular the transistor, its descendants, and the laser. Thinking about the basics of the theory, though, was frowned on – the mantra was “shut up and calculate”. The most important physics journal, The Physical Review, banned papers debating views opposed to those of Bohr.


As early as 1952, David Bohm, a refugee from McCarthyism living in Brazil, produced a good argument for realism, and in the 1960s John Bell finally showed that the standard argument against realism, a mathematical “proof” of John von Neumann from 1932, was wrong. However in another important paper based on EPR, Bell showed that Einstein’s and his own dream of local realism was impossible – at least if quantum mechanics was still correct under entanglement.



John Stewart Bell, 1964. SLAC Staff Directory photograph. Courtesy SLAC National Accelerator Laboratory, Archives and History Office, Muffley Collection.John Stewart Bell, 1964. SLAC Staff Directory photograph. Courtesy SLAC National Accelerator Laboratory, Archives and History Office, Muffley Collection. Used with permission.

This could have been the end for such speculation, but actually it was anything but. While the Bohr-Einstein debate was theoretical, Bell’s work was a direct stimulus to experiment – was quantum mechanics or local realism correct? Such experiments have been carried out with gradually improving technology. While it has been clear for some time that quantum mechanics would win, it is only recently that all loopholes have been removed. It has been confidently predicted that once loophole-free tests had been performed, Nobel Prizes would follow, so we shall wait and see!


Even apart from that, the liberation felt from the negativity of von Neumann’s “theorem” was striking. Very slowly, building up in the 1990s and into the new century, a freedom developed to question the ideas of Bohr and to come up with new ideas and interpretations of quantum theory without being denounced as unprofessional and a “crank”. Many of these ideas would probably be disliked by Einstein and Bell as much as by Bohr, but as in any healthy field of science, discussion is open, many suggestions may be made, and the most satisfactory should survive.


One of the interesting novel interpretations of quantum mechanics has been that of “many worlds” or “many universes”. In this interpretation, rather than measurement producing a single result in “our” Universe, every possible result is found, each in a different universe. The first suggestion came from Hugh Everett III in the 1950s, but the main proponent today is David Deutsch. Since, unlike Bohr’s ideas it does not need an external observer, it is unsurprising that this interpretation is popular with astrophysicists such as Stephen Hawking.


While all this may sound esoteric, it is often found that attention to realism rather than verbal manoeuvring may lead to practical consequences, and in the 1990s quantum information technology has developed to be a major focus of scientific and technical endeavour. The ideas of EPR, Bell, and Deutsch have been central.


Deutsch was the initiator of quantum computation, which has been shown to be able to solve, in minutes, some problems considered, in practice, impossible on pre-quantum or classical computers because of the length of time required. Deutsch argues that this speed-up is because different computations are carried out in each of the Many Worlds, though others disagree.


The other main techniques in quantum information theory are quantum cryptography and quantum teleportation. The first is a way of passing a stream of information from one observer to the other without any eavesdropper gaining any knowledge. The second is much like science fiction “teleportation”, except that it is only applied to single particles, and is not instantaneous – as Einstein demands the process takes place at a speed less than that of light.


Quantum information theory is developing and will continue to develop in many other directions. Like the new ideas on quantum mechanics itself, the comparatively new freedom of thought must be a great boon to those interested in genuine progress in the understanding and application of physics.


Featured image credit: Light by geralt. CC0 Public domain via Pixabay.


The post Quantum mechanics – a new lease of life appeared first on OUPblog.


 •  0 comments  •  flag
Share on Twitter
Published on September 11, 2016 04:30
No comments have been added yet.


Oxford University Press's Blog

Oxford University Press
Oxford University Press isn't a Goodreads Author (yet), but they do have a blog, so here are some recent posts imported from their feed.
Follow Oxford University Press's blog with rss.