Shelves and the Infinite

A shelf is a set with a binary operation \rhd that distributes over itself:

a \rhd (b \rhd c) = (a \rhd b) \rhd (a \rhd c)

There are lots of examples, the simplest being any group, where we define

g \rhd h = g h g^{-1}

They have a nice connection to knot theory, which you can see here if you think hard:

My former student Alissa Crans, who invented the term ‘shelf’, has written a lot about them, starting here:

• Alissa Crans, Lie 2-Algebras, Chapter 3.1: Shelves, Racks, Spindles and Quandles, Ph.D. thesis, U.C. Riverside, 2004.

I could tell you a long and entert...

1 like ·   •  0 comments  •  flag
Share on Twitter
Published on May 05, 2016 23:40
No comments have been added yet.


John C. Baez's Blog

John C. Baez
John C. Baez isn't a Goodreads Author (yet), but they do have a blog, so here are some recent posts imported from their feed.
Follow John C. Baez's blog with rss.