Lance Fortnow's Blog, page 9
February 12, 2025
Research Then and Now
A student asked me if complexity research was easier when I was a student. Interesting question. Let's compare research now versus the late 80's.
The big advantage today is technology. Just a small sampling below.
Information: Google, Wikipedia, Complexity Zoo and the ever more powerful AI systems
Online Papers: arXiv, digital libraries, individual's web sites
Collaboration: Zoom, Overleaf, Theory Stack Exchange
Communication: Social Media, Online Talks and Classes, YouTube, Mobile Phones
Back in the 80's we had LaTeX and email. LaTeX was slow and you had to print out the paper to see it. Email was only text and it was difficult to share papers electronically. You had to go to the library to read papers unless you had the paper proceedings nearby. It was often easier to reprove a theorem then go find the proof.
We did have some advantages back then. Reproving a theorem made you understand it better. Reading a paper in a proceedings or journal often introduced you to other papers in the publication. We didn't have the distractions of social media and the Internet in general so you could actually focus on research. (Though there was a Mac in the MIT student area that ran Tetris)
People came to the office every day. That opened up collaborations formal and informal. I could walk into an office and ask questions to Johan Håstad, Noam Nisan, Paul Beame and Michael Kearns, all postdocs at MIT, not to mention my fellow grad students or the professors. There was a huge advantage being at a place like MIT or Berkeley, better that those advantages have been mitigated somewhat since.
But the biggest advantage of all, and I'm not afraid to admit it, low hanging fruit. Computational complexity was just 20 years old when I started grad school, and the P v NP problem a young teenager. There was surprising theorem after surprising theorem through the early 90's and not so much since. You didn't need to know deep math and most graduate students could follow nearly all of the 47 talks at my first conference (STOC 1986), not likely in the 219 STOC 2025 papers.
Much of my best work was done by reading a paper or watching a talk and wondering why the authors didn't ask some question, and then asking it and sometimes solving it myself or with others. Now you need to spend time climbing the trees and going down deep branches to find new problems that only people on nearby branches would care about or even understand.
But who knows, AI may soon climb those branches for you.
February 9, 2025
Does Lance dislike Ramsey Theory Because he's colorblind?
BILL: Lance, my wife asked if you dislike Ramsey Theory because you are colorblind.
LANCE: (laughs) It's why I don't like Ramsey Theory talks--impossible for me to follow. But I don't actually dislike Ramsey theory. I just don't like it as much as you do.
BILL: Nobody does, except possibly Graham, Rothchild, Spencer, and your average Hungarian first grader.
LANCE: To me Ramsey Theory had one useful cool idea: The Probabilistic Method, that made people actually think Ramsey Theory was far more interesting than it really is.
BILL: Um, that is bad history and bad mathematics.
LANCE: I learned Ramsey Theory from Spencer and his book entitled Ten Lectures on the Probabilistic Method. But the Probabilistic Method was far more interesting than the Ramsey Theory. I suspect this is common: learn Ramsey Theory because of the Probabilistic Method. And some people get suckered into thinking that Ramsey Theory is interesting or important or both. My favorite application of the Probabilistic Method has nothing to do with Ramsey theory: Lautemann's proof that \(BPP \subseteq \Sigma_2\).
BILL: A few points to make here
a) Some people call the Prob Method an application of Ramsey Theory. I do not. The Prob Method was developed by Erdos to get lower bounds on asymptotic Ramsey numbers and was then used for many other things, that you and others find far more interesting. That's great, but that's not really an application of Ramsey Theory.
b) If the prob method was not discovered by Erdos for Ramsey Theory, would it have been discovered later when it was needed for something you care about more? Probably. But it may have been much later.
c) Ramsey Theory has real applications. I have a website of them here. And there are more. For example---
LANCE: Bill, your graduate course in Ramsey theory is titled Ramsey Theory and its ``Applications''. So you do not believe there are real applications.
BILL: Depends how you define real and applications. I put it in quotes since many of the applications are to pure math. Some are to lower bounds in models of computation, but some may still consider that to not be a real application. Rather than debate with the students what a real application is, I put it in quotes.
LANCE: Are there any real applications? That is, applications that are not to pure math, and not to lower bounds.
BILL: I would think you would count lower bounds to be a real application.
LANCE: I am asking on behalf of the unfortunate Programming Language Student who takes your class thinking there will be real applications- perhaps they missed the quotes around applications.
BILL: I know of one real application. And its to Programming Languages! Ramsey Theory has been used to prove programs terminate. I wrote a survey of that line of research here.
LANCE: One? There is only One real application? Besides the application of learning the probabilistic method so they can use the method for more interesting problems. Or to save the earth from aliens.
BILL: Judging a field of Pure Math by how many applications it has does not really make sense. I find the questions and answers themselves interesting. Here is a list of theorems in Ramsey Theory that I find interesting. Do you? (This might not be a fair question either since many theorems are interesting because of their proofs.)
a) (Ramsey's Theorem, Infinite Case) For every 2-coloring of \(K_\omega\) there exists \(H\subseteq N\) such that \(H\) is infinite and every edge between vertices in \(H\) is the same color. My slides here
b) (Van Der Warden's Theorem) For every \(c,k\) there exists W such that for all c-coloring of \(\{1,\ldots,W\} \) there exists \(a,d\), both \(\ge 1 \) such that
\(a, a+d, \ldots, a+(k-1)d\) are all the same color. My slides here.
c) (Subcase of Poly VDW Thm) For every \(c\) there exists W such that for all c-colorings of \(\{1,\ldots,W)\} there exists \(a,d\), both \(\ge 1\) such that
\(a, a+d, a+d^2,\ldots,a+d^{100}\) are the same color. My slides here.
d) For all finite colorings of the Eucidean plane there exists three points, the same color, such that the area of the triangle formed is 1. My slides: here.
So Lance, do these Theorems interest you?
LANCE: Sorry I fell asleep after you said "Ramsey". Let me look. Your slides are terrible. All of the colors are the same!
BILL: Maybe my wife was right.
January 31, 2025
The Situation at the NSF
The National Science Foundation is one of the agencies most affected by the various executive orders issued by the Trump administration. As a critical funder of research in theoretical computer science, and science and engineering more broadly, the NSF has effectively come to a standstill sending universities scrambling. Here's a little primer on what's going on in the foundation.
The NSF, like all parts of the federal government, has to follow the Executive Orders, and the first step is to determine which orders apply to NSF business, then how these orders can be addressed in a way that satisfies the White House and other supervisory agencies. This is a process that the NSF leadership works out and negotiates.
For the immediate NSF business, most influential is the order Ending Illegal Discrimination and Restoring Merit-Based Opportunity, which states, among other things, that some DEIA measures violate anti-discrimination laws. Since NSF cannot pay for activities that violate current law, all active awards are checked whether they might be affected by that. This is done with the highest priority, since it affects the cash flow of current awards. After that, awards that are in progress towards being made, as well as entire programs and solicitations, will be reviewed for compliance with the executive order. Until compliance is assured in a way acceptable to the supervisory agencies, no new awards or other financial commitments can be made. After that, normal business should resume, although probably with a huge backlog.
The Hiring Freeze Executive Order also has a huge influence on NSF. The hiring freeze applies to all federal agencies, but NSF has a large number of rotators, usually university researchers who serve as a program director for a one to four-year term. The rotators are essential to the programs and the hiring freeze prevents new rotators from starting their role at the NSF. The hiring freeze will last for 90 days; then a plan to reduce the size of the federal workforce will be presented, and NSF might, we hope, again start hiring. In the past, NSF hiring processes were excruciatingly slow, so we need to expect NSF to be understaffed for a significant period beyond the 90 days. The recent Fork in the Road letter of the Office of Personnel Management might lead further people to leave federal employment, and the strong stand on return to in-person work might make hiring Rotators even more difficult. So, although all this is in flow and changing, it currently looks like difficult times ahead for the NSF.
What does this all mean for the research community? Some current funding locked up, hopefully for a short time, and heavy delays on new grants given higher scrutiny and lower staffing, and funding in fairness or focused heavily on broadening participation might be killed all together. A lengthy delay will mean less funding for PhD students and postdocs next academic year. Given the reduced funding and the political atmosphere, we may lose America's ability to recruit the world's top talent to our universities.
You can read official news on how the executive orders affect NSF and also see Scott's take.
January 29, 2025
Lautemann's Beautiful Proof
In writing the drunken theorem post, I realized I never wrote a post on Lautemann's amazing proof that BPP is contained in \(\Sigma^p_2\), the second level of the polynomial-time hierarchy.
Clemens Lautemann, who passed away in 2005 at the too young age of 53, wasn't the first to prove this theorem. That honor goes to Michael Sipser who proved that BPP is in the polynomial-time hierarchy using Kolmogorov complexity and Peter Gacs who puts it into the second level using hash function, both results in the same paper.
Nisan and Wigderson, after Sipser, Gacs and Lautemann, note that BPP in \(\Sigma^p_2\) follows from their pseudorandom generators, simply guess a potentially hard function and use the universal quantifier to check that it's hard. Once you have a hard function you can use their generator to derandomize BPP.
But Lautemann's proof is incredibly beautiful because he just directly gives the \(\Sigma^p_2\) (\(\exists\forall)\) expression, and two simple probabilistic method arguments to show it works. QED.
Let L be in BPP accepted by a probabilistic polynomial-time Turing machine M with error bounded by \(2^{-n}\). Let \(A(x,r)\) be true iff \(M(x)\) using random tape \(r\) accepts. \(A(x,r)\) is deterministically polynomial-time computable. We can assume \(|r|=|x|^k\) for some \(k\).
Here is the \(\Sigma^p_2\) expression for input \(x\) of length \(n\). All quantification is over binary strings of length \(n^k\). Let \(\oplus\) be bitwise parity and \(\vee\) be logical OR.
\(\exists z_1,\ldots,z_{n^k} \forall y\ A(x,z_1\oplus y) \vee \ldots \vee A(x,z_{n^k}\oplus y)\)
That's it, the beautiful self-contained formula. We just need to show that this expression is true if and only if \(x\) is in L.
Suppose \(x\) is in L and pick \(z_1,\ldots,z_{n^k}\) independently at random. For a string \(y\) the probability that \(A(x,z_i\oplus y)\) is false for all \(i\) is at most \((2^{-n})^{n^k}=2^{-n^{k+1}}\). So the probability that for some \(y\) this happens is at most \(2^{n^k}2^{-n^{k+1}}=2^{n^k-n^{k+1}}\ll 1\) so for some choice (even most choices) of the \(z_i\), the expression will be true.
Now suppose \(x\) is not in L. Fix \(z_1,\ldots,z_{n^k}\) and now pick \(y\) at random. The probability that \(A(x,z_i\oplus y)\) is true for a fixed i is at most \(2^{-n}\), so the probability that one of them is true is at most \(n^k2^{-n}\ll 1\).
MIC DROPJanuary 26, 2025
People who live through two square years
44*44=1936.
45*45=2025. This year!
46*46= 2116.
Since my fake birthday is Oct 1, 1960 (I do not reveal my real birthday to try to prevent ID theft), which is past 1936, and I won't live to 2116 unless Quantum-AI finds a way to put my brain in a a vat, I will not see two square years in my life :-(
Since I keep a list of celebrities (defined as people I know who have some fame - so its subjective) who are over 80, I have a LIST of celebrities who were born in 1936 or earlier. I was going to list them in this post but there are to many. So I list those that I think my readers care about, and point to the full list.
Here are people who have lived through two squares who I think you care about. I leave out how old they are or what year they were born. They are in alphabetical order by their first names. I put a * next to the people who, in 1936, were AWARE that it was a square year. So the starred names are those who truly ENJOYED living through 2 square years.
NAME KNOWN TO US FOR
Andrzej Ehrenfeucht Math. EF-games (he is the E)
Anil Nerode Math- Recursive Math
Aviezri Fraenkel Math-Combinatorial Games
Buzz Aldrin Walked on the moon
Charles Duke Walked on the moon.
Dana Scott Math-CS. Prog Langs. Turing Award
David Scott Walked on the moon
Dirk Van Dalen Math- Logic
Eric Hirsch Jr American Educator *
Harrison Schmidt Walked on the Moon.
Harry Furstenberg Math-Ergodic methods in Ramsey Theory.
Heisuka Hironik Math-Algebraic Geom-Fields Medal
Herman Chernoff Math-Probability *
Jack Edmonds CS. Theorist.
James Watson Biologist-The Double Helix. Nobel Prize with Crick.*
Jane Goodall Zoologist and Activist
Jean-Pierre Serre Math. Algebraic X. Fields Medal.*
John Thompson Math. Group Theory. Fields Medal, Abel Prize
Micahel Rabin CS/ Math. Theorsit. Turing Award.
Noam Chomsky Linguistics. Did work on Grammars
Richard Friedberg Physicist. Also invented Priority method in Rec Theory.
Richard Karp CS. Theorist. Turing Award. .
Richard Stearns CS. Theorist. Turing Award.
Stephen Smale Math-Lots of Stuff
Tom Baker Actor-Dr. Who.
Tom Lehrer Math/Novelty songs..*
Tony Hoare CS. PL. Turing Award.
Volker Strassen Math-CS.
Walter Koenig Actor. Star Trek
William Shatner Actor- Star Trek
For my complete list see here
It is currently impossible for someone to live through three square years (again, unless they get their brain in a vat, or some other not-yet-invented mechanism). In a much earlier era it was possible:
20*20=400
21*21=441
22*22=484
So if you were born in 400 and lived to be 84 years old, three squares! While MOST people didn't live that long back then, SOME did.
10*10=100
11*11=121
12*12=144
Born in the year 100, live to be 44 years old. Was the calendar well established by then?
Reminds me of a great line from A Funny Think Happened on the Way to the Forum, a musical that takes place in the early AD's. The character Pseudolus says:
(Looking at a bottle of wine) Was 1 a good year?
January 22, 2025
The Fighting Temeraire
A colleague and I decided to see how well LLMs could teach us a topic we knew nothing about. We picked the Romanticism art movement. I asked ChatGPT to tutor me on the topic for an hour. Chatty picked four paintings.
Top Left: Liberty Leading the People (Delacroix, 1830)Top Right: Wanderer above the Sea of Fog (Friedrich, 1818)
Bottom Left: The Fighting Temeraire (Turner, 1838)
Bottom Right: The Third of May 1808 (Goya, 1814)For each of these paintings, I put the painting up a one screen and used the voice feature to have ChatGPT give me an overview of each, and then we would have a discussion about it where I would ask about various features. Ended up spending about an hour on each. Was it successful? I now know significantly more about the Romantic art period and these paintings, though of course not an expert. It was certainly a better and more enjoyable experience than freshman seminar course on art history I took in college.
Let discuss one of these paintings in more detail, the 1938 painting The Fighting Temeraire, tugged to her last berth to be broken up by Joseph Mallord William Turner, on display at the National Gallery in London.
The Fighting Temeraire by J.M.W. Turner (click on picture for more detail)The 98-gun ship Temeraire featured on the left fought in the Battle of Trafalgar. This painting captures the ship being towed by a steam tug through the Thames to be broken up for scrap.
Much to love in the painting: the reddish sunset, the reflections of the boats in the water, the detail of the Temeraire and the lack of detail of the tug.
But also note the nod to technological change, the tall sailboat being taken to its end by a coal-powered tugboat, marking the new era of shipping vessels, the industrial revolution in full swing, and the beauty we lose to progress. Now a bad metaphor for the AI revolution of today.
If you want to learn more about the painting, you can watch this lecture from the National Gallery, or you could ask your favorite LLM.
January 19, 2025
Presidential Quiz!
I made up a quiz about the American Presidents here.
It has 40 questions. In the modern electronic age you can probably look up most or even all of the answers. So what to do about that?
1) The quiz is not for money or credits or anything, so if you ``cheat'' you only cheat yourself.
2) Be honest with yourself and take it in three hours.
3) USE the web and see how long it takes you to finish it. You can make up some way to measure how well you did by combining how many you got right with how long it took.
4) The answers, that I will post later in the week or next week, have lots of other information of interest. So whichever of 1,2,3 you do or something else, read the solutions (even those you got right) and be enlightened.
It is actually titled Prez Trivia Quiz. This might not be accurate.
What is trivia? I think it is knowledge that does not connect to other knowledge and hence is not important. Some of my questions are trivia, and some are not. I give examples of each:
What is the most common middle initial for a president? This is clearly trivia. I don't know the answer and its no on the quiz, but I might put it on the next time I do this, four years from now.
Five presidents ran again for president four or more years after leaving office. Name them and how thy did. This is not trivia (what word means the opposite of trivia? See later). Since Trump ran four years later and won it is of interest to see what circumstances in the past lead to a former prez (a) running again, and (b) winning.
If you are so inclined you can, for each question on the quiz, say if its trivia or not. YMMV.
I googled "opposite of trivia" and got this informative website (I am not being sarcastic) here.
January 15, 2025
"Our Days Are Numbered"
Slide in Lev Reyzin's JMM talk "Problems in AI and ML for Mathematicians"Reyzin is paraphrasing Telgarsky. Posted with permission.
Last week I attended the Joint Mathematics Meeting in Seattle with a theme ofWe Decide Our Future: Mathematics in the Age of AI
With little computational complexity in the conference, I attended many of the AI talks. You could divide them into Math for AI and AI for Math. Mathematics of course plays critical roles in machine learning optimization, and several talks focused on provably good learning algorithms, though they overemphasized the importance of such. Do you get on a plane because you understand the physics or because air travel has a strong safety record?
But let's focus on AI for Math which generated the most discussion and angst.
I started the conference sitting on a panel on the challenges of peer review in mathematics. Math doesn't have the replication crisis that dogs other scientific communities. But math does have papers with very specialized, long, detailed proofs and few qualified referees willing to check them over with care.
We're not there yet, but in the "near future" we ought to have AI systems that can verify well-written proofs by compiling them using proof assistants like Lean. Referees could spend less time on checking proofs and more on deciding whether the model, theorem and/or techniques merit publication. We might get to the point that you couldn't even submit a paper to a journal until the proofs have been verified.
It's what comes next that really spooks mathematicians. While AI has made significant progress in solving competition problems with DeepMind's AlphaProof and Open AI's O3, it has only played minor roles in developing new ideas for theorems. Eventually AI systems will find critical steps for publishable theorems. Who do we give the credit to? When AI systems become stronger that typical PhD students, what kinds of problems to we give the students?
We'll get plenty of AI slop, flooding journals with mathematical papers that technically prove new theorems but don't offer any particularly interesting or illuminating insights. But we'll also get mathematicians who can unleash an army of virtual grad students to find new connections between different subfields, or make significant progress on major open problems in the field.
Some mathematicians don't want AI trained on their papers and using their techniques and theorems, even though they wouldn't have problems with other mathematicians doing so. In any case, they might not have much choice as many publishers are making deals with AI companies.
The future of mathematicians might follow that of artists and programmers. The best will do fine since they can find proofs beyond what an AI can do. Mathematicians who know how to ask the right questions can harness AI to make themselves far more productive. All mathematicians will have to navigate this brave new world.
"At least they'll still need us to teach the courses," one mathematician told me. Don't be so sure.
January 12, 2025
Random Thought on AI from someone in the REAL WORLD
Guest Post from Nick Sovich.
-----------------------------------------------------------------------------
Bill Gasarch recently blogged on RANDOM THOUGHTS ON AI here . He is in the realm of theory. I am in the realm of applications so I asked if I could do a post on AI from that background. He agreed, and here's the post:
1) Words Matter
Today you tell a foundation model who to be and how to behave by giving it a system prompt and a chat prompt. The system prompt is the AI analog of
I’m a CS professor, I’m an expert in Ramsay theory, and my goal is to help students learn.
The chat prompt is the AI analog of
“Hi CS Professor, can you please help me write a blog post to formulate my thoughts on AI”?
Words comprise these system prompts and chat prompts. Getting the right words is very important, in the same way writing the right lines of code is important.
So if you have an AI that *can* be any 157-level IQ expert in any field, you still haveto tell it what kind of expert to be, what its worldview is, and how to communicate. Because it can’t have infinite world views and communication styles all at once.
Example System Prompt and Chat Prompt is here.
2) If English becomes the #1 programming language, then what’s the difference between a poet and a computer scientist?
There has been talk in the industry of English eventually becoming the number 1 programming language. What does that mean? A poet has mastery over the English language. A computer scientist has mastery over programming languages. A poet can create works of art. A poet can be creative, but so can a computer scientist. A computer scientist can be pragmatic, but so can a poet. Will poets become better programmers than computer scientists? Will computer scientists become better artists than poets? Does it matter?
3) What is code and what is poetry?
Bad code doesn’t compile, or it compiles but doesn’t run, or it runs but has bugs. Bad poetry doesn’t express the author’s intent, or it doesn’t evoke the reader’s emotion, or it doesn’t convey a message to society. Bad code is still code, bad poetry is still poetry. Humans can produce good and bad code and good and bad poetry. AI can produce good and bad code and bad poetry. Can AI produce good poetry?
4) AI is a tool, like auto-complete.
This is both good and bad.
Under use the tool, and you waste a lot of time.
Over use the tool and you don't understand your own product.
5) Where should AI start and end in academia?
This is an important question worthy of a separate blog that I might do in the future.
6) AI can either replace people or empower people.
We should look for ways that it empowers people. A nice 38 second clip about that here.
As an example:
Good: Giving the vet tech tools to record my intake questions through natural language instead of pen and paper.
Bad: Automating away all vet tech jobs and replacing them with humanoid robots that would scare my dog anyway. It’s traumatic already when a human pins her down to give her eye drops.
Example System Prompt and Chat Prompt here.
7) How many tokens and how much test-time computation would it take to fully capture my dog’s personality?
First of all, the real thing is better. To see what the latest models are capable of, I used the reasoning models to help generate prompts for the diffusion models, to see how closely I could replicate my dog’s appearance. The reasoning models capture the veterinary terminology very well, and increased specificity in prompting leads to better results from the diffusion models. The diffusion models get close, but don’t seem to have the level of expert veterinary knowledge that the reasoning models do (yet).
Example Prompt and Resulting Image here.
8) If spending an hour a day on social media can radicalize you politically, can spending an hour a day reasoning with an AI on technical topics make you more technical?
Spending an hour a day searching the internet for technical topics and reading them can certainly make you more technical. If AI helps you get that information more efficiently, and if the AI actually works (hallucinates less than doing a web search would lead you to incorrect technical information), then it follows that AI can be more efficient than a web search in making you more technical. AI needs to be “aligned”, just like the web search needs to be “unbiased”. And make sure that one of the topics you learn, either through web search or AI, is how to read a map if you lose internet access.
BILL's comment on point 8: While I agree that spending an hour a day (or more) reasoning with an AI on a technical topic is a good idea, make sure you don't fall into a rabbit hole. For example, while using AI to help me with Ramsey Theory I, on a whim, asked it to write me a poem about Ramsey Theory. It wasn't that good but it was better than what I could do. I won't reproduce it for fear of sending my readers down a rabbit hole.
January 8, 2025
When DO Names Change? When SHOULD Names Change?
BILL: Good news for Jimmy Carter! He won The Betty White Award! (see here).
LANCE: That's not good news. He had to die to get it.
BILL: Call it a mixed bag. Good news for me, in that I have a famous person for The Betty White award. And I later found out that Manmohan Singh, a former prime minister of India passed away on Dec 26, 2024, so I have two famous people for The Betty White Award.
LANCE: You should change the name to The Jimmy Carter Award. Did Betty White start a Department of Education?
BILL: No can do. What if someone even more famous dies next year. I don't want to play musical chairs with the name. Past winners were Pele and The Pope Emeritus. Were they more famous than Betty White?
LANCE: YES!
BILL: And that's the problem. If I changed it to The Pele Award and later to The Jimmy Carter Award, that's three names in three years. Also,
If it was The Pele Award, people would think it has to do with Soccer.
If it was The Pope Benedict award people would think it has to do with the Catholic Church.
If it was The Jimmy Carter award, people would think it was about building houses.
If it was The Manmohan Singh award, people would think I am not an ignorant American who knows nothing about Indian Politics.
With Betty White there is nothing so striking about her to think its about something else. (Not quite true- she was involved with Animal Rights.)
LANCE: Yup, Carter got the Nobel prize for homebuilding. You over estimate how many people care about The Betty White Award. But you named the award after Betty White only because she died shortly before you started the award. Hardly seems like a good criteria.
BILL: Well, we do this all the time in computer science.
LANCE: Indeed. Some of them, like the Turing Award, survived the test of time. Others, which we shall not name, have not.
But anyway, all of this raises the question, should we change the name when we have more famous dead people?
BILL: Rarely. Do you have examples of names being changed?
LANCE: Yes, though not replaced by other names.
BILL: So, we need more examples of name changes that are NOT because a person was cancelled or a conference changes organizations.
LANCE: It's hard to do because it's admitting you made a mistake to begin with. So instead we are getting gun shy on new award names. The ACM has made it to make a named award and the more recent SIGACT awards have been named after those who died long ago (Gödel) or still living (Knuth). An exception was made for the Danny Lewin Best Student Paper Award at STOC. Danny died fighting the terrorists on American Flight 11 on September 11, 2001 and the award was named for him starting in 2002.
BILL: So it's no longer worth dying early to get an award.
LANCE: I wouldn't recommend it.
Lance Fortnow's Blog
- Lance Fortnow's profile
- 4 followers

