More on this book
Community
Kindle Notes & Highlights
Feynman's Perspective
The quantum world ensures that once it has been established that each electron has gone through either the left slit or the right slit, the interference between the two slits disappears.
Feynman proclaimed that each electron that makes it through to the phosphorescent screen actually goes through both slits.
Feynman argued that in traveling from the source to a given point on the phosphorescent screen each individual electron actually traverses every possible trajectory simultaneously;
Feynman showed that he could assign a number to each of these paths in such a way that their combined average yields exactly the same result for the probability calculated using the wave-function approach. And so from Feynman's perspective no probability wave needs to be associated with the electron. Instead, we have to imagine something equally if not more bizarre. The probability that the electron—always viewed as a particle through and through—arrives at any chosen point on the screen is built up from the combined effect of every possible way of getting there. This is known as Feynman's
...more
Feynman once wrote, "[Quantum mechanics] describes nature as absurd from the point of view of common sense. And it fully agrees with experiment. So I hope you can accept nature as She is—absurd."
To this end, Feynman showed that if you examine the motion of large objects—like baseballs, airplanes, or planets, all large in comparison with subatomic particles—his rule for assigning numbers to each path ensures that all paths but one cancel each other out when their contributions are combined. In effect, only one of the infinity of paths matters as far as the motion of the object is concerned. And this trajectory is precisely the one emerging from Newton's laws of motion. This is why in the everyday world it seems to us that objects—like a ball tossed in the air—follow a single, unique,
...more
Quantum Weirdness
By using an ever dimmer lamp (and an ever more sensitive light detector) we can have a vanishingly small impact on the electron's motion. But quantum mechanics itself illuminates a flaw in this reasoning. As we turn down the intensity of the light source we now know that we are decreasing the number of photons it emits. Once we get down to emitting individual photons we cannot dim the light any further without actually turning it off. There is a fundamental quantum-mechanical limit to the "gentleness" of our probe. And hence, there is always a minimal disruption that we cause to the electron's
...more
Planck's law tells us that the energy of a single photon is proportional to its frequency (inversely proportional to its wavelength). By using light of lower and lower frequency (larger and larger wavelength) we can therefore produce ever gentler individual photons. But here's the catch. When we bounce a wave off of an object, the information we receive is only enough to determine the object's position to within a margin of error equal to the wave's wavelength.
In the case of light, the constituent photons are, roughly speaking, the individual wave cycles (with the height of the wave cycles being determined by the number of photons); a photon, therefore, can be used to pinpoint an object's location only to within a precision of one wavelength.
Greater precision in a position measurement necessarily entails greater imprecision in a velocity measurement, and vice versa.
Heisenberg showed that the trade-off between the precision of position and velocity measurements is a fundamental fact that holds true regardless of the equipment used or the procedure employed.
Einstein tried to minimize this departure from classical physics by arguing that although quantum reasoning certainly does appear to limit one's knowledge of the position and velocity, the electron still has a definite position and velocity exactly as we have always thought. But during the last couple of decades theoretical progress spearheaded by the late Irish physicist John Bell and the experimental results of Alain Aspect and his collaborators have shown convincingly that Einstein was wrong. Electrons—and everything else for that matter—cannot be described as simultaneously being at
...more
Just as Heisenberg showed that there is a trade-off between the precision of measurements of position and velocity, he also showed that there is a similar trade-off in the precision of energy measurements and how long one takes to do the measurement.
Ever increasing precision of energy measurements require ever longer durations to carry them out.
Chapter 5
The Need for a New Theory: General Relativity vs. Quantum Mechanics
Since their usual domains of applicability are so different, most situations require the use of quantum mechanics or general relativity, but not both. Under certain extreme conditions, however, where things are very massive and very small—near the central point of black holes or the whole universe at the moment of the big bang, to name two examples—we require both general relativity and quantum mechanics for proper understanding.
The Heart of Quantum Mechanics
Even without "direct hits" from an experimenter's disruptive photon, the electron's velocity severely and unpredictably changes from one moment to the next.
Even in the most quiescent setting imaginable, such as an empty region of space, the uncertainty principle tells us that from a microscopic vantage point there is a tremendous amount of activity. And this activity gets increasingly agitated on ever smaller distance and time scales.
Even in an empty region of space—inside an empty box, for example—the uncertainty principle says that the energy and momentum are uncertain: They fluctuate between extremes that get larger as the size of the box and the time scale over which it is examined get smaller and smaller.
But what participates in these exchanges in, for instance, a quiet empty region of space? Everything. Literally. Energy (and momentum as well) is the ultimate convertible currency. E = mc2 tells us that energy can be turned into matter and vice versa. Thus if an energy fluctuation is big enough it can momentarily cause, for instance, an electron and its antimatter companion the positron to erupt into existence, even if the region was initially empty! Since this energy must be quickly repaid, these particles will annihilate one another after an instant, relinquishing the energy borrowed in
...more
As Feynman once jested, "Created and annihilated, created and annihilated—what a waste of time."
Quantum Field Theory
Quantum electrodynamics is arguably the most precise theory of natural phenomena ever advanced.
In analogy with quantum electrodynamics, physicists were able to construct quantum field theories for the strong and the weak forces, called quantum chromodynamics and quantum electroweak theory. "Quantum chromodynamics" is a more colorful name than the more logical "quantum strong dynamics," but it is just a name without any deeper meaning; on the other hand, the name "electroweak" does summarize an important milestone in our understanding of the forces of nature.
Messenger Particles
It's as if the photon is not so much the transmitter of the force per se, but rather the transmitter of a message of how the recipient must respond to the force in question. For like-charged particles, the photon carries the message "move apart," while for oppositely charged particles it carries the message "come together." For this reason the photon is sometimes referred to as the messenger particle for the electromagnetic force.
Gauge Symmetry
All the data that have been collected establish that there is a symmetry among the quarks in the sense that the interactions between any two like-colored quarks (red with red, green with green, or blue with blue) are all identical, and similarly, the interactions between any two unlike-colored quarks (red with green, green with blue, or blue with red) are also identical. In fact, the data support something even more striking. If the three colors—the three different strong charges—that a quark can carry were all shifted in a particular manner (roughly speaking, in our fanciful chromatic
...more
Much like a sensitive environmental-control system that keeps temperature, air pressure, and humidity in an area completely constant by compensating perfectly for any exterior influences, certain kinds of force fields, according to Yang and Mills, will provide perfect compensation for shifts in force charges, thereby keeping the physical interactions between the particles completely unchanged.
This realization shows that, although the gravitational force and the strong force have vastly different properties (recall, for example, that gravity is far feebler than the strong force and operates over enormously larger distances), they do have a somewhat similar heritage: they are each required in order that the universe embody particular symmetries.
General Relativity vs. Quantum Mechanics
John Wheeler coined the term quantum foam to describe the frenzy revealed by such an ultramicroscopic examination of space (and time)—it describes an unfamiliar arena of the universe in which the conventional notions of left and right, back and forth, up and down (and even of before and after) lose their meaning. It is on such short distance scales that we encounter the fundamental incompatibility between general relativity and quantum mechanics.
On ultramicroscopic scales, the central feature of quantum mechanics—the uncertainty principle—is in direct conflict with the central feature of general relativity—the smooth geometrical model of space (and of spacetime).
The equations of general relativity cannot handle the roiling frenzy of quantum foam.
The smallness of Planck's constant—which governs the strength of quantum effects—and the intrinsic weakness of the gravitational force team up to yield a result called the Planck length, which is small almost beyond imagination: a millionth of a billionth of a billionth of a billionth of a centimeter (10-33 centimeter).
Part III
The Cosmic Symphony
Chapter 6
Nothing but Music: The Essentials of Superstring Theory
First and foremost, string theory appears to resolve the conflict between general relativity and quantum mechanics. As we shall see, the spatially extended nature of a string is the crucial new element allowing for a single harmonious framework incorporating both theories.
Second, string theory provides a truly unified theory, since all matter and all forces are proposed to arise from one basic ingredient: oscillating strings. Finally, as discussed more fully in subsequent chapters, beyond these remarkable achievements, string theory once again radically changes our understanding of spacetime.
A Brief History of String Theory
Veneziano's observation provided a powerful mathematical encapsulation of many features of the strong force and it launched an intense flurry of research aimed at using Euler's beta-function, and various generalizations, to describe the surfeit of data being collected at various atom smashers around the world.
Like memorized formulae used by a student who does not understand their meaning or justification, Euler's beta-function seemed to work, but no one knew why.
This changed in 1970 when the works of Yoichiro Nambu of the University of Chicago, Holger Nielsen of the Niels Bohr Institute, and Leonard Susskind of Stanford University revealed the hith...
This highlight has been truncated due to consecutive passage length restrictions.
If the pieces of string were small enough, they reasoned, they would still look like point particles, and hence could be consistent with experimental observations.

