More on this book
Community
Kindle Notes & Highlights
by
Ray Kurzweil
Read between
May 14 - June 19, 2017
As with the DNA computer described above, a key to successful quantum computing is a careful statement of the problem, including a precise way to test possible answers. The quantum computer effectively tests every possible combination of values for the qubits. So a quantum computer with one thousand qubits would test 21,000 (a number approximately equal to one followed by 301 zeroes) potential solutions simultaneously. A thousand-bit quantum computer would vastly outperform any conceivable DNA computer, or for that matter any conceivable nonquantum computer. There are two limitations to the
...more
While human neurons are wondrous creations, we wouldn’t (and don’t) design computing circuits using the same slow methods. Despite the ingenuity of the designs evolved through natural selection, they are many orders of magnitude less capable than what we will be able to engineer. As we reverse engineer our bodies and brains, we will be in a position to create comparable systems that are far more durable and that operate thousands to millions of times faster than our naturally evolved systems. Our electronic circuits are already more than one million times faster than a neuron’s electrochemical
...more
We’ve already shown that atoms can store information at a density of greater than one bit per atom, such as in computing systems built from nuclear magnetic-resonance devices. University of Oklahoma researchers stored 1,024 bits in the magnetic interactions of the protons of a single molecule containing nineteen hydrogen atoms.51 Thus, the state of the rock at any one moment represents at least 1027 bits of memory. In terms of computation, and just considering the electromagnetic interactions, there are at least 1015 changes in state per bit per second going on inside a 2.2-pound rock, which
...more
A more conservative but compelling design for a massively parallel, reversible computer is Eric Drexler’s patented nanocomputer design, which is entirely mechanical.65 Computations are performed by manipulating nanoscale rods, which are effectively spring-loaded. After each calculation, the rods containing intermediate values return to their original positions, thereby implementing the reverse computation. The device has a trillion (1012) processors and provides an overall rate of 1021 cps, enough to simulate one hundred thousand human brains in a cubic centimeter. Setting a Date for the
...more
I set the date for the Singularity—representing a profound and disruptive transformation in human capability—as 2045. The nonbiological intelligence created in that year will be one billion times more powerful than all human intelligence today.
Recall that a 2.2-pound rock has on the order of 1027 bits of information encoded in the state of its atoms and about 1042 cps represented by the activity of its particles. Since we are talking about an ordinary stone, assuming that its surface could store about one thousand bits is a perhaps arbitrary but generous estimate.68 This represents 10−24 of its theoretical capacity, or a memory efficiency of 10−24.69 We can also use a stone to do computation. For example, by dropping the stone from a particular height, we can compute the amount of time it takes to drop an object from that height. Of
...more
Peeling the Onion. The brain is not a single information-processing organ but rather an intricate and intertwined collection of hundreds of specialized regions. The process of “peeling the onion” to understand the functions of these interleaved regions is well under way. As the requisite neuron descriptions and brain-interconnection data become available, detailed and implementable replicas such as the simulation of the auditory regions described below (see “Another Example: Watts’s Model of the Auditory Regions” on p. 183) will be developed for all brain regions.
There are a number of other key ways in which the brain differs from a conventional computer: • The brains circuits are very slow. Synaptic-reset and neuron-stabilization times (the amount of time required for a neuron and its synapses to reset themselves after the neuron fires) are so slow that there are very few neuron-firing cycles available to make pattern-recognition decisions. Functional magnetic-resonance imaging (fMRI) and magneto-encephalography (MEG) scans show that judgments that do not require resolving ambiguities appear to be made in a single neuron-firing cycle (less than twenty
...more
This highlight has been truncated due to consecutive passage length restrictions.
Scanning Using Nanobots. Although these largely noninvasive means of scanning the brain from outside the skull are rapidly improving, the most powerful approach to capturing every salient neural detail will be to scan it from inside. By the 2020s nanobot technology will be viable, and brain scanning will be one of its prominent applications. As described earlier nanobots are robots that will be the size of human blood cells (seven to eight microns) or even smaller.44 Billions of them could travel through every brain capillary, scanning each relevant neural feature from up close. Using
...more
Similarly, biology, which is rooted in chemistry, uses its own models. It is often unnecessary to express higher-level results using the intricacies of the dynamics of the lower-level systems, although one has to thoroughly understand the lower level before moving to the higher one. For example, we can control certain genetic features of an animal by manipulating its fetal DNA without necessarily understanding all of the biochemical mechanisms of DNA, let alone the interactions of the atoms in the DNA molecule.
Neurons (biological or otherwise) are a prime example of what is often called chaotic computing. Each neuron acts in an essentially unpredictable fashion. When an entire network of neurons receives input (from the outside world or from other networks of neurons), the signaling among them appears at first to be frenzied and random. Over time, typically a fraction of a second or so, the chaotic interplay of the neurons dies down and a stable pattern of firing emerges.
Brain Plasticity In 1861 French neurosurgeon Paul Broca correlated injured or surgically affected regions of the brain with certain lost skills, such as fine motor skills or language ability. For more than a century scientists believed these regions were hardwired for specific tasks. Although certain brain areas do tend to be used for particular types of skills, we now understand that such assignments can be changed in response to brain injury such as a stroke. In a classic 1965 study, D. H. Hubel and T. N. Wiesel showed that extensive and far-reaching reorganization of the brain could take
...more
In one experiment conducted by Michael Merzenich and his colleagues at the University of California at San Francisco, monkeys’ food was placed in such a position that the animals had to dexterously manipulate one finger to obtain it. Brain scans before and after revealed dramatic growth in the interneuronal connections and synapses in the region of the brain responsible for controlling that finger.
An experiment by genetics researchers Fred Gage, G. Kempermann, and Henriette van Praag at the Salk Institute for Biological Studies showed that neurogenesis is actually stimulated by our experience. Moving mice from a sterile, uninteresting cage to a stimulating one approximately doubled the number of dividing cells in their hippocampus regions.72
Common sense is not a simple thing. Instead, it is an immense society of hard-earned practical ideas—of multitudes of life-learned rules and exceptions, dispositions and tendencies, balances and checks. —MARVIN MINSKY
Most of the genome that is devoted to the brain describes the detailed structure of each type of neural cell (including its dendrites, spines, and synapses) and how these structures respond to stimulation and change. Relatively little genomic code is responsible for the actual “wiring.” In the cerebellum, the basic wiring method is repeated billions of times. It is clear that the genome does not provide specific information about each repetition of this cerebellar structure but rather specifies certain constraints as to how this structure is repeated (just as the genome does not specify the
...more
Although we have the illusion of receiving high-resolution images from our eyes, what the optic nerve actually sends to the brain is just outlines and clues about points of interest in our visual field. We then essentially hallucinate the world from cortical memories that interpret a series of extremely low-resolution movies that arrive in parallel channels.
Operations of thought are like cavalry charges in a battle—they are strictly limited in number, they require fresh horses, and must only be made at decisive moments. —ALFRED NORTH WHITEHEAD But the big feature of human-level intelligence is not what it does when it works but what it does when it’s stuck. —MARVIN MINSKY
Recursion is the key capability identified in a new theory of linguistic competence. In Noam Chomsky’s early theories of language in humans, he cited many common attributes that account for the similarities in human languages. In a 2002 paper by Marc Hauser, Noam Chomsky, and Tecumseh Fitch, the authors cite the single attribution of “recursion” as accounting for the unique language faculty of the human species.113 Recursion is the ability to put together small parts into a larger chunk, and then use that chunk as a part in yet another structure and to continue this process iteratively. In
...more
Interestingly, we are able to predict or anticipate our own decisions. Work by physiology professor Benjamin Libet at the University of California at Davis shows that neural activity to initiate an action actually occurs about a third of a second before the brain has made the decision to take the action. The implication, according to Libet, is that the decision is really an illusion, that “consciousness is out of the loop.” The cognitive scientist and philosopher Daniel Dennett describes the phenomenon as follows: “The action is originally precipitated in some part of the brain, and off fly
...more
Interfacing the Brain and Machines I want to do something with my life; I want to be a cyborg. —KEVIN WARWICK
Another approach being pursued by the Max Planck Institute for Human Cognitive and Brain Sciences in Munich is directly interfacing nerves and electronic devices. A chip created by Infineon allows neurons to grow on a special substrate that provides direct contact between nerves and electronic sensors and stimulators. Similar work on a “neurochip” at Caltech has demonstrated two-way, noninvasive communication between neurons and electronics.117
Homo sapiens, the first truly free species, is about to decommission natural selection, the force that made us…. [S]oon we must look deep within ourselves and decide what we wish to become. —E. O. WILSON, CONSILIENCE: THE UNITY OF KNOWLEDGE, 1998 We know what we are, but know not what we may be. —WILLIAM SHAKESPEARE The most important thing is this: To be able at any moment to sacrifice what we are for what we could become. —CHARLES DUBOIS
The generation of scanning tools now emerging will for the first time provide spatial and temporal resolution capable of observing in real time the performance of individual dendrites, spines, and synapses. These tools will quickly lead to a new generation of higher-resolution models and simulations. Once the nanobot era arrives in the 2020s we will be able to observe all of the relevant features of neural performance with very high resolution from inside the brain itself. Sending billions of nanobots through its capillaries will enable us to noninvasively scan an entire working brain in real
...more
Uploading the Human Brain To become a figment of your computer’s imagination. —DAVID VICTOR DE TRANSEND, GODLING’S GLOSSARY, DEFINITION OF “UPLOAD”
Although I estimated that 1016 cps of computation and 1013 bits of memory are sufficient to emulate human levels of intelligence, my estimates for the requirements of uploading were higher: 1019 cps and 1018 bits, respectively. The reason for the higher estimates is that the lower ones are based on the requirements to re-create regions of the brain at human levels of performance, whereas the higher ones are based on capturing the salient details of each of our approximately 1011 neurons and 1014 interneuronal connections. Once uploading is feasible, we are likely to find that hybrid solutions
...more
To capture this level of detail will require scanning from within the brain using nanobots, the technology for which will be available by the late 2020s. Thus, the early 2030s is a reasonable time frame for the computational performance, memory, and brain-scanning prerequisites of uploading. Like any other technology, it will take some iterative refinement to perfect this capability, so the end of the 2030s is a conservative projection for successful uploading. We should point out that a person’s personality and skills do not reside only in the brain, although that is their principal location.
...more
Perhaps the most important question will be whether or not an uploaded human brain is really you. Even if the upload passes a personalized Turing test and is deemed indistinguishable from you, one could still reasonably ask whether the upload is the same person or a new person. After all, the original person may still exist. I’ll defer these essential questions until chapter 7. In my view the most important element in uploading will be our gradual transfer of our intelligence, personality, and skills to the nonbiological portion of our intelligence. We already have a variety of neural
...more
SIGMUND FREUD: When you talk about reverse engineering the human brain, just whose brain are you talking about? A mans brain? A woman’s? A child’s? The brain of a genius? A retarded individual? An “idiot savant”? A gifted artist? A serial murderer? RAY: Ultimately, we’re talking about all of the above. There are basic principles of operation that we need to understand about how human intelligence and its varied constituent skills work. Given the human brain’s plasticity, our thoughts literally create our brains through the growth of new spines, synapses, dendrites, and even neurons. As a
...more
MARVIN: Keep in mind that not all AIs will need human bodies. RAY: Indeed. As humans, despite some plasticity, both our bodies and brains have a relatively fixed architecture. MOLLY 2004: Yes, it’s called being human, something you seem to have a problem with. RAY: Actually, I often do have a problem with all the limitations and maintenance that my version 1.0 body requires, not to mention all the limitations of my brain. But I do appreciate the joys of the human body. My point is that AIs can and will have the equivalent of human bodies in both real and virtual-reality environments. As Marvin
...more
The first half of the twenty-first century will be characterized by three overlapping revolutions—in Genetics, Nanotechnology, and Robotics. These will usher in what I referred to earlier as Epoch Five, the beginning of the Singularity. We are in the early stages of the “G” revolution today. By understanding the information processes underlying life, we are starting to learn to reprogram our biology to achieve the virtual elimination of disease, dramatic expansion of human potential, and radical life extension. Hans Moravec points out, however, that no matter how successfully we fine-tune our
...more
This machinery is essentially a self-replicating nanoscale replicator that builds the elaborate hierarchy of structures and increasingly complex systems that a living creature comprises.
“Whereas some of my contemporaries may be satisfied to embrace aging gracefully as part of the cycle of life, that is not my view. It may be ‘natural,’ but I don’t see anything positive in losing my mental agility, sensory acuity, physical limberness, sexual desire, or any other human ability. I view disease and death at any age as a calamity, as problems to be overcome.”
A hybrid scenario involving both bio- and nanotechnology contemplates turning biological cells into computers. These “enhanced intelligence” cells can then detect and destroy cancer cells and pathogens or even regrow human body parts. Princeton biochemist Ron Weiss has modified cells to incorporate a variety of logic functions that are used for basic computation.54 Boston University’s Timothy Gardner has developed a cellular logic switch, another basic building block for turning cells into computers.55 Scientists at the MIT Media Lab have developed ways to use wireless communication to send
...more
One of the most powerful methods of applying life’s machinery involves harnessing biology’s own reproductive mechanisms in the form of cloning. Cloning will be a key technology—not for cloning actual humans but for life-extension purposes, in the form of “therapeutic cloning.” This process creates new tissues with “young” telomere-extended and DNA-corrected cells to replace without surgery defective tissues or organs. All responsible ethicists, including myself, consider human cloning at the present time to be unethical.
Nanotechnology has the potential to enhance human performance, to bring sustainable development for materials, water, energy, and food, to protect against unknown bacteria and viruses, and even to diminish the reasons for breaking the peace [by creating universal abundance]. —NATIONAL SCIENCE FOUNDATION NANOTECHNOLOGY REPORT
However, as Drexler points out, a nanoscale assembler does not necessarily have to be self-replicating.76 Given the inherent dangers in self-replication, the ethical standards proposed by the Foresight Institute (a think tank founded by Eric Drexler and Christine Peterson) contain prohibitions against unrestricted self-replication, especially in a natural environment.
Nature shows that molecules can serve as machines because living things work by means of such machinery. Enzymes are molecular machines that make, break, and rearrange the bonds holding other molecules together. Muscles are driven by molecular machines that haul fibers past one another. DNA serves as a data-storage system, transmitting digital instructions to molecular machines, the ribosomes, that manufacture protein molecules. And these protein molecules, in turn, make up most of the molecular machinery. —ERIC DREXLER
Upgrading the Cell Nucleus with a Nanocomputer and Nanobot. Here’s a conceptually simple proposal to overcome all biological pathogens except for prions (self-replicating pathological proteins). With the advent of full-scale nanotechnology in the 2020s we will have the potential to replace biology’s genetic-information repository in the cell nucleus with a nanoengineered system that would maintain the genetic code and simulate the actions of RNA, the ribosome, and other elements of the computer in biology’s assembler. A nanocomputer would maintain the genetic code and implement the
...more
DNA is proving to be as versatile as nanotubes for building molecular structures. DNA’s proclivity to link up with itself makes it a useful structural component. Future designs may combine this attribute as well as its capacity for storing information. Both nanotubes and DNA have outstanding properties for information storage and logical control, as well as for building strong three-dimensional structures.
A particularly impressive demonstration of a nanoscale device constructed from DNA is a tiny biped robot that can walk on legs that are ten nanometers long.90 Both the legs and the walking track are built from DNA, again chosen for the molecule’s ability to attach and detach itself in a controlled manner. The nanorobot, a project of chemistry professors Nadrian Seeman and William Sherman of New York University, walks by detaching its legs from the track, moving down it, and then reattaching its legs to the track. The project is another impressive demonstration of the ability of nanoscale
...more
This highlight has been truncated due to consecutive passage length restrictions.
A few weeks ago I gave a talk on nanotechnology and energy titled “Be a Scientist, Save the World” to about 700 middle and high school students in the Spring Branch ISD, a large public school system here in the Houston area. Leading up to my visit the students were asked to write an essay on “why I am a Nanogeek”. Hundreds responded, and I had the privilege of reading the top 30 essays, picking my favorite top 5. Of the essays I read, nearly half assumed that self-replicating nanobots were possible, and most were deeply worried about what would happen in their future as these nanobots spread
...more
The net effect of these nanomedical interventions will be the continuing arrest of all biological aging, along with the reduction of current biological age to whatever new biological age is deemed desirable by the patient, severing forever the link between calendar time and biological health. Such interventions may become commonplace several decades from today. Using annual checkups and cleanouts, and some occasional major repairs, your biological age could be restored once a year to the more or less constant physiological age that you select. You might still eventually die of accidental
...more
MOLLY 2004: Okay, so I’ll have all these nanobots in my bloodstream. Aside from being able to sit at the bottom of my pool for hours, what else is this going to do for me? RAY: It will keep you healthy. They’ll destroy pathogens such as bacteria, viruses, and cancer cells, and they won’t be subject to the various pitfalls of the immune system, such as autoimmune reactions. Unlike your biological immune system, if you don’t like what the nanobots are doing, you can tell them to do something different. MOLLY 2004: You mean, send my nanobots an e-mail? Like, Hey, nanobots, stop destroying those
...more
RAY: When nanotechnology is mature, it’s going to solve the problems of biology by overcoming biological pathogens, removing toxins, correcting DNA errors, and reversing other sources of aging. We will then have to contend with new dangers that it introduces, just as the Internet introduced the danger of software viruses. These new pitfalls will include the potential for self-replicating nanotechnology getting out of control, as well as the integrity of the software controlling these powerful, distributed nanobots.
MOLLY 2104: In the 2040s we developed the means to instantly create new portions of ourselves, either biological or nonbiological. It became apparent that our true nature was a pattern of information, but we still needed to manifest ourselves in some physical form. However, we could quickly change that physical form
Given that superintelligence will one day be technologically feasible, will people choose to develop it? This question can pretty confidently be answered in the affirmative. Associated with every step along the road to superintelligence are enormous economic payoffs. The computer industry invests huge sums in the next generation of hardware and software, and it will continue doing so as long as there is a competitive pressure and profits to be made. People want better computers and smarter software, and they want the benefits these machines can help produce. Better medical drugs; relief for
...more
This highlight has been truncated due to consecutive passage length restrictions.
Machines have exacting memories. Contemporary computers can master billions of facts accurately, a capability that is doubling every year.159 The underlying speed and price-performance of computing itself is doubling every year, and the rate of doubling is itself accelerating. As human knowledge migrates to the Web, machines will be able to read, understand, and synthesize all human-machine information. The last time a biological human was able to grasp all human scientific knowledge was hundreds of years ago. Another advantage of machine intelligence is that it can consistently perform at
...more
There’s this stupid myth out there that A.I. has failed, but A.I. is everywhere around you every second of the day. People just don’t notice it. You’ve got A.I. systems in cars, tuning the parameters of the fuel injection systems. When you land in an airplane, your gate gets chosen by an A.I. scheduling system. Every time you use a piece of Microsoft software, you’ve got an A.I. system trying to figure out what you’re doing, like writing a letter, and it does a pretty damned good job. Every time you see a movie with computer-generated characters, they’re all little A.I. characters behaving as
...more
Neural nets are also naturally amenable to parallel processing, since that is how the brain works. The human brain does not have a central processor that simulates each neuron. Rather, we can consider each neuron and each interneuronal connection to be an individual slow processor. Extensive work is under way to develop specialized chips that implement neural-net architectures in parallel to provide substantially greater throughput.