Baran Hashemi

63%
Flag icon
Gödel’s incompleteness theorems are bombs exploding at the very center of the Hilbert program, decisively and entirely refuting it. The incompleteness theorems show, first, that we cannot in principle enumerate a complete axiomatization of the truths of elementary mathematics, even in the context of arithmetic, and second, no sufficient axiomatization can prove its own consistency, let alone the consistency of a much stronger system. Hilbert’s world is a mirage.
Lectures on the Philosophy of Mathematics
Rate this book
Clear rating
Open Preview