Take the story of wireless communication. It began with the discovery of the laws of electricity and magnetism by scientists like Michael Faraday and André-Marie Ampère. Without their observations and tinkering, the crucial facts about magnets, electrical currents, and their invisible force fields would have remained unknown, and the possibility of wireless communication would never have been realized. So, obviously, experimental physics was indispensable here. But so was calculus. In the 1860s, a Scottish mathematical physicist named James Clerk Maxwell recast the experimental laws of
Take the story of wireless communication. It began with the discovery of the laws of electricity and magnetism by scientists like Michael Faraday and André-Marie Ampère. Without their observations and tinkering, the crucial facts about magnets, electrical currents, and their invisible force fields would have remained unknown, and the possibility of wireless communication would never have been realized. So, obviously, experimental physics was indispensable here. But so was calculus. In the 1860s, a Scottish mathematical physicist named James Clerk Maxwell recast the experimental laws of electricity and magnetism into a symbolic form that could be fed into the maw of calculus. After some churning, the maw disgorged an equation that didn’t make sense. Apparently something was missing in the physics. Maxwell suspected that Ampère’s law was the culprit. He tried patching it up by including a new term in his equation — a hypothetical current that would resolve the contradiction — and then let calculus churn again. This time it spat out a sensible result, a simple, elegant wave equation much like the equation that describes the spread of ripples on a pond. Except Maxwell’s result was predicting a new kind of wave, with electric and magnetic fields dancing together in a pas de deux. A changing electric field would generate a changing magnetic field, which in turn would regenerate the electric field, and so on, each field bootstrapping the other forward, propagating together as a w...
...more
This highlight has been truncated due to consecutive passage length restrictions.