More on this book
Community
Kindle Notes & Highlights
by
James Nestor
Read between
April 10, 2021 - January 24, 2022
extend life: A half century later, Kelder’s booklet was rereleased as Ancient Secret of the Fountain of Youth. It became an international sensation, selling more than two million copies. A review of some of the cardiopulmonary benefits of practicing the Five Tibetan Rites can be found in an article by Dr. Joel Kahn, “A Cardiologist’s Favorite Yoga Sequence for Boosting Heart Health,” MindBodyGreen, Sept. 10, 2019.
couldn’t get enough stale air out: In each exhale, we expel about 3,500 compounds. Much of this is organic (water vapor, carbon dioxide, and other gases), but we also exhale pollutants: pesticides, chemicals, and engine exhaust. When we don’t breathe out completely, these toxins sit in the lungs and fester, causing infections and other problems.
was relatively easy: When muscles in the body get strained, other muscles in the area step in to lighten the load. Should we strain our left ankle, we’ll place more weight on the right. But the diaphragm doesn’t have that option. No other muscle does what it does. It just keeps laboring on at whatever cost, because if it doesn’t, we’ll quickly run out of air and die. Over time, the body learns to do what it can to compensate and engages “accessory” respiratory muscles in the chest to help air get in and out of the lungs. This chest-centered breathing becomes a habit.
begin a return journey: Each blood cell offloads only about 25 percent of the oxygen; the remaining 75 percent stays on board and goes back to the lungs. The oxygen that doesn’t get off is considered a reserve mechanism, but if the hemoglobin doesn’t pick up new oxygen in the lungs, it will be essentially totally empty after about three circulations, which takes about three minutes.
Conditioning the body to constant, slower nasal breathing takes time. Douillard warned his athletes that they should be prepared for a 50 percent decrease in performance after they first switched to nasal breathing. Some athletes had to wait several months to see gains, which is one reason so many of them, and other non-athletes, give up and just return to mouthbreathing. It’s also important to note that these kinds of long inhales and exhales aren’t beneficial, or even possible, for very high intensity exercise. Running 400 meters, for instance, would require much more oxygen to keep up with
...more
a state of coherence: Coherence is the measurement of the harmony of two signals. Whenever two signals increase and decrease in phase, they are in coherence, a state of peak efficiency. Much more about coherence and the benefits of breathing 5.5 times a minute with 5.5-second inhales and exhales can be found in the following: Stephen B. Elliott, The New Science of Breath (Coherence, 2005); Stephen Elliott and Dee Edmonson, Coherent Breathing: The Definitive Method (Coherence, 2008); I. M. Lin, L. Y. Tai, and S. Y. Fan, “Breathing at a Rate of 5.5 Breaths per Minute with Equal
...more
peak efficiency: A good, doctor-reviewed overview of this type of paced “coherent” breathing: Arlin Cuncic, “An Overview of Coherent Breathing,” VeryWellMind, June 25, 2019, https://www.verywellmind.com/an-overview-of-coherent-breathing-4178943.
required no real effort: In 2012, Italian researchers found that breathing at six breaths a minute had powerful effects at high altitudes of 17,000 feet. The technique not only significantly reduced blood pressure but also boosted oxygen saturation in the blood. Grzegorz Bilo et al., “Effects of Slow Deep Breathing at High Altitude on Oxygen Saturation, Pulmonary and Systemic Hemodynamics,” PLoS One 7, no. 11 (Nov. 2012): e49074.
“Nobody knows you’re doing it”: Landau, “This Breathing Exercise Can Calm You Down.”
were in the range of 5.5: Marc A. Russo et al., “The Physiological Effects of Slow Breathing in the Healthy Human,” Breathe 13, no. 4 (Dec. 2017): 298–309.
“start extending your exhales”: This kind of long inhale and exhale isn’t possible for very high intensity exercise. Running 400 meters, for instance, would require much more oxygen to keep up with metabolic needs. (Endurance athletes can breathe 200 liters of breath per minute during moments of extreme stress—that’s up to 20 times what’s considered a normal resting volume.) But for steady, medium-level exercise like this, long breaths are far more efficient.
3rd International Conference on Science, Technology, and Humanity (ISETH) in December 2017,
Zátopek developed: More about hypoventilation training is available on Dr. Xavier Woorons’s website: http://www.hypoventilation-training.com/index.html
Lance Armstrong, the disgraced cyclist, didn’t get busted for taking adrenaline or steroids but for injecting himself with his own blood and increasing his red blood cell count, which would allow him to carry more oxygen. What Armstrong was essentially doing was a instant fix of breath restriction training.
The more “air hunger” you create, the more EPO will release from the kidneys, the more red blood cells will release from bone marrow, the more oxygen will upload into your body, the more resilient the body will become, the farther and faster and higher it will go.
They called their organization The NNT, a simple statistical concept: “Number Needed to Treat.” Since starting in 2010, NNT (https://www.thennt.com) has surveyed more than 275 drugs and therapies in fields ranging from cardiology to endocrinology to dermatology. They rated each of these drugs and therapies on a color scale: green (the therapy or drug has clear benefits); yellow (it is unclear if it has any benefits); red (no benefits); and black (the treatment is more harmful to patients than helpful).
Price later discovered that these balls were the adrenal glands, the richest source of vitamin C in all animal and plant tissues.
Read more about Peter’s research: http://emptynosesyndromeaerodynamics.com
heightened sympathetic alert: The sympathetic control center is located not in the brain but in the vertebral ganglia along the spine, while the parasympathetic system is located further up in the brain. This may not be a coincidence. Some researchers, such as Stephen Porges, suggest that the sympathetic system is a more primitive system while the parasympathetic system is more evolved.
Andrew Huberman: “Applications,” Wim Hof Method, https://www.wimhofmethod.com/applications.
“A single moment of inattention and I forget to breathe,” Hans said before he died. Iman Feiz-Erfan et al., “Ondine’s Curse,”
“super endurance”: See Buteyko’s chart of optimum (and dangerously low) carbon dioxide levels at https://images.app.goo.gl/DGjT3bL8PMDQYmqL7.
Wim Hof’s heavy breathing can increase available space for gas exchange by about 40 percent—a tremendous amount.
With this bonus space, Hof, for instance, was able to consume double the normal amount of oxygen 40 minutes after he finished the exercises.
confirmed that it exists: There was, however, some very weird, and fascinating, government-supported research into the possibilities of moving this “vital energy.” Check out this gem of a study from 1986 that somehow seeped through the cracks of the CIA website:
By the age of three: “Swami Rama, Himalayan Master, Part 1,” YouTube, https://www.youtube.com/watch?v=S1sZNbRH2N8.
The earliest yoga was a technology developed to influence and control prana. It was a science of meditation and breathing.
“Each day about 30 pounds of air participates in this tidal flow, compared with less than 4 pounds of food and 5 pounds of water.”
Cells “buffer” too. Whenever there is a decrease in circulation or oxygen, cells will produce energy (ATP) anaerobically. This process creates a more acidic “microenvironment” in which oxygen can more easily disassociate from hemoglobin. In this, chronic overbreathing will not create “hypoxia” in tissues; this is a fact that many Buteyko adherents consistently get wrong. The real damage from overbreathing comes from the constant energy the body has to expend to run more cells anaerobically and to constantly buffer for carbon dioxide deficiencies.

