More on this book
Community
Kindle Notes & Highlights
The innovation of mashing and cooking food, however, had consequences. The quickly growing brain needed space to stretch out, and it took it from the front of our faces, home to sinuses, mouths, and airways. Over time, muscles at the center of the face loosened, and bones in the jaw weakened and grew thinner. The face shortened and the mouth shrank, leaving behind a bony protuberance that replaced the squashed snout of our ancestors. This new feature was ours alone and distinguished us from other primates: the protruding nose.
The problem was that this smaller, vertically positioned nose was less efficient at filtering air, and it exposed us to more airborne pathogens and bacteria.19 The smaller sinuses and mouth also reduced space in our throats. The more we cooked, the more soft, calorie-rich food we consumed, the larger our brains grew and the tighter our airways became.
In colder climates, our noses would grow narrower and longer to more efficiently heat up air before it entered our lungs; our skin would grow lighter to take in more sunshine for production of vitamin D. In sunny and warm environments, we adapted wider and flatter noses, which were more efficient at inhaling hot and humid air; our skin would grow darker to protect us from the sun.23,
Strangely, sadly, the same adaptations that would allow our ancestors to outwit, outmaneuver, and outlive other animals—a mastery of fire and processing food, an enormous brain, and the ability to communicate in a vast range of sounds—would obstruct our mouths and throats and make it much harder for us to breathe. This recessed growth would, much later, make us prone to choke on our own bodies when we slept: to snore.fn1
None of this mattered to the early humans, of course. For tens of thousands of years, our ancestors would use their wildly developed heads to breathe just fine. Armed with a nose, a voice, and a supersized brain, humans took over the world.
There are dozens of alternate nostril breathing techniques. I’ve started with the most basic. It involves placing an index finger over the left nostril and then inhaling and exhaling only through the right. I did this two dozen times after each meal today, to heat up my body and aid my digestion.18 Before meals, and any other time I wanted to relax, I’d switch sides, repeating the same exercise with my left nostril open. To gain focus and balance the body and mind, I followed a technique called surya bheda pranayama, which involves taking one breath into the right nostril, then exhaling
...more
The Native Americans explained to Catlin that breath inhaled through the mouth sapped the body of strength, deformed the face, and caused stress and disease. On the other hand, breath inhaled through the nose kept the body strong, made the face beautiful, and prevented disease.
The stretches, called the Five Tibetan Rites,
However, the lung-expanding stretches he described are rooted in actual exercises that date back to 500 BCE.2 Tibetans had used these methods for millennia to improve physical fitness, mental health, cardiovascular function, and, of course, extend life.3
Whenever they followed this slow breathing pattern, blood flow to the brain increased and the systems in the body entered a state of coherence, when the functions of heart, circulation, and nervous system are coordinated to peak efficiency.20, 21 The moment the subjects returned to spontaneous breathing or talking, their hearts would beat a little more erratically, and the integration of these systems would slowly fall apart. A few more slow and relaxed breaths, and it would return again.
It turned out that the most efficient breathing rhythm occurred when both the length of respirations and total breaths per minute were locked in to a spooky symmetry: 5.5-second inhales followed by 5.5-second exhales, which works out almost exactly to 5.5 breaths a minute.22 This was the same pattern of the rosary. The results were profound, even when practiced for just five to ten minutes a day.23
One thing that every medical or freelance pulmonaut I’ve talked to over the past several years has agreed on is that, just as we’ve become a culture of overeaters, we’ve also become a culture of overbreathers.
Slower, longer exhales, of course, mean higher carbon dioxide levels. With that bonus carbon dioxide, we gain a higher aerobic endurance. This measurement of highest oxygen consumption, called VO2 max, is the best gauge of cardiorespiratory fitness. Training the body to breathe less actually increases VO2 max, which can not only boost athletic stamina but also help us live longer and healthier lives.7
Zátopek developed his own training methods to give himself an edge.14 He’d run as fast as he could holding his breath, take a few huffs and puffs and then do it all again. It was an extreme version of Buteyko’s methods, but Zátopek didn’t call it Voluntary Elimination of Deep Breathing. Nobody did. It would become known as hypoventilation training.
Competitive swimmers usually take two or three strokes before they flip their heads to the side and inhale. Counsilman trained his team to hold their breath for as many as nine strokes. He believed that, over time, the swimmers would utilize oxygen more efficiently and swim faster.18 In a sense, it was Buteyko’s Voluntary Elimination of Deep Breathing and Zátopek hypoventilation—underwater. Counsilman used it to train the U.S.19
Woorons repeated the tests, but this time subjects practiced the half-full technique, which is how Buteyko trained his patients, and likely how Counsilman trained his swimmers. Breathing less offered huge benefits. If athletes kept at it for several weeks, their muscles adapted to tolerate more lactate accumulation, which allowed their bodies to pull more energy during states of heavy anaerobic stress, and, as a result, train harder and longer.
Breathing way less delivered the benefits of high-altitude training at 6,500 feet, but it could be used at sea level, or anywhere.22
Over the years, this style of breath restriction has been given many names—hypoventilation, hypoxic training, Buteyko technique, and the pointlessly technical “normobaric hypoxia training.” The outcomes were the same: a profound boost in performance.fn2 Not just for elite athletes, but for everyone.
Just a few weeks of the training significantly increased endurance, reduced more “trunk fat,” improved cardiovascular function, and boosted muscle mass compared to normal-breathing exercise.23 This list goes on.24 The takeaway is that hypoventilation works. It helps tr...
This highlight has been truncated due to consecutive passage length restrictions.
We’ve just jogged a few miles, inhaling fast and exhaling very long breaths to a count of about seven or higher, trying to keep our lungs roughly half full.25 I
They discovered that the optimum amount of air we should take in at rest per minute is 5.5 liters. The optimum breathing rate is about 5.5 breaths per minute. That’s 5.5-second inhales and 5.5-second exhales. This is the perfect breath. Asthmatics, emphysemics, Olympians, and almost anyone, anywhere, can benefit from breathing this way for even a few minutes a day, much longer if possible: to inhale and exhale in a way that feeds our bodies just the right amount of air, at just the right time, to perform at peak capacity. To just keep breathing, less.
The problem had less to do with what we were eating than how we ate it. Chewing. It was the constant stress of chewing that was lacking from our diets—not vitamin A, B, C, or D. Ninety-five percent of the modern, processed diet was soft. Even what’s considered healthy food today—smoothies, nut butters, oatmeal, avocados, whole wheat bread, vegetable soups. It’s all soft. Our ancient ancestors chewed for hours a day, every day. And because they chewed so much, their mouths, teeth, throats, and faces grew to be wide and strong and pronounced. Food in industrialized societies was so processed
...more
What looked like human progress—all that milling, mass distribution, and preservation of food—had horrible consequences. Breathing slow, less, and exhaling deeply, I realized, none of it would really matter unless we were able to get those breaths through our noses, down our throats, and into the lungs. But our caved-in faces and too-small mouths had become obstacles to that clear path.
He explained that the first step to improving airway obstruction wasn’t orthodontics but instead involved maintaining correct “oral posture.” Anyone could do this, and it was free. It just meant holding the lips together, teeth lightly touching, with your tongue on the roof of the mouth. Hold the head up perpendicular to the body and don’t kink the neck. When sitting or standing, the spine should form a J-shape—perfectly straight until it reaches the small of the back, where it naturally curves outward. While maintaining this posture, we should always breathe slowly through the nose into the
...more
Along with maintaining the correct oral posture, Mike recommended a series of tongue-thrusting exercises, which he says can train us out of the “death pose” and make breathing easier. The tongue is a powerful muscle. If its force is directed at the teeth, it can throw them out of alignment; if it’s directed at the roof of the mouth, Mike believed it might help expand the upper palate of the mouth and open up the airways. The exercise, which Mike’s hordes of social media fans call “mewing,” has been popularly adopted as “a new health craze.”44 After a few months, mewers have claimed their
...more
These singers, actors, and models needed straight teeth but couldn’t be seen with braces. A colleague introduced him to an old monobloc-like device. After a few months of using it, opera singers began hitting higher notes and chronic snorers slept peacefully for the first time in years. Everyone had straighter teeth and reported breathing better. Some in their 50s and 60s noticed the bones in their mouths and faces growing wider and more pronounced the longer they wore the devices. The results stunned Belfor. He’d been taught, like everyone else, that bone mass (just as with lung size) only
...more
“You, me, whoever—we can grow bone at any age,” Belfor told me. All we need are stem cells. And the way we produce and signal stem cells to build more maxilla bone in the face is by engaging the masseter—by clamping down on the back molars over and over. Chewing. The more we gnaw, the more stem cells release, the more bone density and growth we’ll trigger, the younger we’ll look and the better we’ll breathe.52
The chewing and sucking stress required for breastfeeding exercises the masseter and other facial muscles and stimulates more stem cell growth, stronger bones, and more pronounced airways. Until a few hundred years ago, mothers would breastfeed infants up to two to four years of age, and sometimes to adolescence.53 The more time infants spent chewing and sucking, the more developed their faces and airways would become, and the better they’d breathe later in life. Dozens of studies in the past two decades have supported this claim. They’ve shown lower incidence of crooked teeth and snoring and
...more
texture had changed. People, pigs, whatever. Whenever they switched from harder foods to soft foods, faces would narrow, teeth would crowd, jaws would fall out of alignment. Breathing problems would often follow.
Simpler and less intense methods of breathing slow, less, through the nose with a big exhale, can also diffuse stress and restore balance. These techniques can be life-changing, and I’d seen dozens of people changed by them. But they can also take a while, especially for those with long-standing chronic conditions.
Fixing the autonomic nervous system can effectively cure or lessen these symptoms.17 In the past decade, surgeons have implanted electrical nodes in patients that work as an artificial vagal nerve to restart blood flow and communication between organs. The procedure is called vagus nerve stimulation, and it’s highly effective for patients suffering from anxiety, depression, and autoimmune diseases. But there is another, less invasive way Porges found to stimulate the vagus nerve: breathing.18
Breathing really fast and heavy on purpose flips the vagal response the other way, shoving us into a stressed state. It teaches us to consciously access the autonomic nervous system and control it, to turn on heavy stress specifically so that we can turn it off and spend the rest of our days and nights relaxing and restoring, feeding and breeding.22, 23
He proved his point three years later, when Radboud University researchers brought in two dozen healthy male volunteers and randomly split them into two groups.30 Half the men spent the next ten days learning Hof’s version of Tummo while exposing themselves to cold, doing things like playing soccer shirtless in snow. The control group received no training. The two groups were brought back into the lab. Each was hooked up to monitors, then injected with the E. coli endotoxin. The group trained by Hof were able to control their heart rate, temperature, and immune response, and stimulate the
...more
To practice Wim Hof’s breathing method, start by finding a quiet place and lying flat on your back with a pillow under your head. Relax the shoulders, chest, and legs. Take a very deep breath into the pit of your stomach and let it back out just as quickly. Keep breathing this way for 30 cycles. If possible, breathe through the nose; if the nose feels obstructed, try pursed lips. Each breath should look like a wave, with the inhale inflating the stomach, then the chest. You should exhale all the air out in the same order. At the end of 30 breaths, exhale to the natural conclusion, leaving
...more
This flip-flopping—breathing all-out, then not at all, getting really cold and then hot again—is the key to Tummo’s magic. It forces the body into high stress one minute, a state of extreme relaxation the next. Carbon
Breathholding hacks, or, as Feinstein would call them, carbon dioxide therapies, have been around for thousands of years. The ancient Romans prescribed soaking in thermal baths (which contained high levels of carbon dioxide that was absorbed through the skin) as a cure for anything from gout to war wounds.12 Centuries later, Belle Époque French gathered at thermal springs at Royat in the French Alps to wade in bubbling waters for days at a time. “The study of the chemical composition of the four mineral springs at Royat will show that we have several powerful agents at our command, and that
...more
see the word prana, which translates to “life force” or “vital energy.” Prana is, basically, an ancient theory of atoms. The concrete in your driveway, clothes on your body, spouse clanking dishes in your kitchen—they’re all made of swirling atomic bits. It’s energy. It’s prana. The concept of prana was first documented around the same time in India and China, some 3,000 years ago, and became the bedrock of medicine.6 The Chinese called it ch’i and believed the body contained channels that functioned like prana power lines connecting organs and tissues.7 The Japanese had their own name for
...more
Once a day, they were to lie down, take a brief inhale, and then exhale to a count of 6. As they progressed, they could inhale to a count of 4 and exhale to 8, with the goal of reaching a half-minute exhale after six months of practice.19 Upon reaching this 30 count, Rama promised his students, they “will not have any toxins and will be disease-free.” In an instructional video, gently stroking his own arm, he said, “Your body will look like smooth body, like silk, you see?”
Humans “rust” as well. As the cells in our bodies lose the ability to attract oxygen, Szent-Györgyi wrote, electrons within them will slow and stop freely interchanging with other cells, resulting in unregulated and abnormal growth. Tissues will begin “rusting” in much the same way as other materials. But we don’t call this “tissue rust.” We call it cancer. And this helps explain why cancers develop and thrive in environments of low oxygen.28 The best way to keep tissues in the body healthy was to mimic the reactions that evolved in early aerobic life on Earth—specifically, to flood our bodies
...more
Breathing is a key input. From what I’ve learned in the past decade, that 30 pounds of air that passes through our lungs every day and that 1.7 pounds of oxygen our cells consume is as important as what we eat or how much we exercise.4 Breathing is a missing pillar of health.
huge sinus cavities, strong jaws, and straight teeth. Almost all humans born before 300 years ago shared these traits because they chewed a lot. The bones in the human face don’t stop growing in our 20s, unlike other bones in the body. They can expand and remodel into our 70s, and likely beyond. Which means we can influence the size and shape of our mouths and improve our ability to breathe at virtually any age. To do this, don’t follow the diet advice of eating what our great-grandmothers ate. Too much of that stuff was already soft and overly processed. Your diet should consist of the
...more
The perfect breath is this: Breathe in for about 5.5 seconds, then exhale for 5.5 seconds. That’s 5.5 breaths a minute for a total of about 5.5 liters of air.
The most effective technique in hypoventilation training is to extend exhales and then hold the breath with lungs half-full as long as possible and do it all over again. This can happen anywhere, at any time.
In the 1990s, Dr. Alison McConnell, a London physiologist and a leading expert on breath training, had cyclists use a resistance device that forced pressure on the inhale. She found that the athletes gained a shocking 33 percent increase in endurance performance after just four weeks. Just five minutes of this training can lower blood pressure by 12 points, about twice what aerobic exercise delivers.

