More on this book
Community
Kindle Notes & Highlights
In transporting the breath, the inhalation must be full. When it is full, it has big capacity. When it has big capacity, it can be extended. When it is extended, it can penetrate downward. When it penetrates downward, it will become calmly settled. When it is calmly settled, it will be strong and firm. When it is strong and firm, it will germinate. When it germinates, it will grow. When it grows, it will retreat upward. When it retreats upward, it will reach the top of the head. The secret power of Providence moves above. The secret power of the Earth moves below. He who follows this will
...more
Pulmonologists, I learned, work mainly on specific maladies of the lungs—collapse, cancer, emphysema. “We’re dealing with emergencies,” one veteran pulmonologist told me. “That’s how the system works.” No, this breathing research has been taking place elsewhere: in the muddy digs of ancient burial sites, the easy chairs of dental offices, and the rubber rooms of mental hospitals. Not the kinds of places where you’d expect to find cutting-edge research into a biological function.
They discovered that our capacity to breathe has changed through the long processes of human evolution, and that the way we breathe has gotten markedly worse since the dawn of the Industrial Age. They discovered that 90 percent of us—very likely me, you, and almost everyone you know—is breathing incorrectly and that this failure is either causing or aggravating a laundry list of chronic diseases.
Evolution doesn’t always mean progress, Evans told me. It means change. And life can change for better or worse. Today, the human body is changing in ways that have nothing to do with the “survival of the fittest.” Instead, we’re adopting and passing down traits that are detrimental to our health. This concept, called dysevolution, was made popular by Harvard biologist Daniel Lieberman, and it explains why our backs ache, feet hurt, and bones are growing more brittle. Dysevolution also helps explain why we’re breathing so poorly.
The problem was that this smaller, vertically positioned nose was less efficient at filtering air, and it exposed us to more airborne pathogens and bacteria. The smaller sinuses and mouth also reduced space in our throats. The more we cooked, the more soft, calorie-rich food we consumed, the larger our brains grew and the tighter our airways became.
More nimble and flexible tongues made it easier to control the nuance and structure of sounds, so the tongue slipped farther down the throat and pushed the jaw forward. But this lowered larynx became less efficient at its original purpose. It created too much space at the back of the mouth and made early humans susceptible to choking. We could choke if we swallowed something too big, and we’d choke on smaller objects that were swallowed quickly and sloppily. Sapiens would become the only animals, and the only human species, that could easily choke on food and die.
Inflammation in the throat and polyps both contribute to snoring and sleep apnea. Nasal obstruction triggers this nighttime choking as well, but nobody knows how quickly the damage comes on, or how severe it might become.
The readouts reveal what the previous days have revealed: mouthbreathing is destroying our health. My blood pressure has spiked by an average of 13 points from where it was before the test, which puts me deep into stage 1 hypertension. If left unchecked, this state of chronically raised blood pressure, also shared by a third of the U.S. population, can cause heart attacks, stroke, and other serious problems. Meanwhile, my heart rate variability, a measure of nervous system balance, has plummeted, suggesting that my body is in a state of stress.
Mike Lisanke liked this
He insisted that, for a few days during each phase of the experiment, we saddle up on stationary bikes and pedal to the edge of our aerobic capacity. The plan was to meet at the gym at 10:15 a.m.
The bike experiment is a repeat of several studies conducted 20 years earlier by Dr. John Douillard, a trainer to elite athletes, from tennis star Billie Jean King to triathletes to the New Jersey Nets. In the 1990s, Douillard became convinced that mouthbreathing was hurting his clients. To prove it, he gathered a group of professional cyclists, rigged them up with sensors to record their heart rate and breathing rate, and put them on stationary bikes.
During the first trial, Douillard told the athletes to breathe entirely through their mouths. As the intensity increased, so did the rate of breathing, which was expected. By the time athletes reached the hardest stage of the test, pedaling out 200 watts of power, they were panting and struggling to catch a breath. Then Douillard repeated the test while the athletes breathed through their noses. As the intensity of exercise increased during this phase, the rate of breathing decreased.
Because anaerobic respiration is intended as a backup system, our bodies are built with fewer anaerobic muscle fibers. If we rely on these less-developed muscles too often, they eventually break down.
This is why aerobic respiration is so important. Remember those cells that evolved to eat oxygen 2.5 billion years ago and kicked off an explosion of life? We’ve got some 37 trillion of them in our bodies. When we run our cells aerobically with oxygen, we gain some 16 times more energy efficiency over anaerobic. The key for exercise, and for the rest of life, is to stay in that energy-efficient, clean-burning, oxygen-eating aerobic zone for the vast majority of time during exercise and at all times during rest.
Mike Lisanke liked this
In the 1970s, Phil Maffetone, a top fitness coach who worked with Olympians, ultramarathoners, and triathletes, discovered that most standardized workouts could be more injurious than beneficial to athletes. The reason is that everybody is different, and everybody will react differently to training.
Maffetone personalized his training to focus on the more subjective metric of heart rates, which ensured that his athletes stayed inside a defined aerobic zone, and that they burned more fat, recovered faster, and came back the next day—and the next year—to do it again.
Finding the best heart rate for exercise is easy: subtract your age from 180. The result is the maximum your body can with...
This highlight has been truncated due to consecutive passage length restrictions.
Mouthbreathing, it turns out, changes the physical body and transforms airways, all for the worse. Inhaling air through the mouth decreases pressure, which causes the soft tissues in the back of the mouth to become loose and flex inward, creating less space and making breathing more difficult. Mouthbreathing begets more mouthbreathing. Inhaling from the nose has the opposite effect.
She and her colleague, Kevin Boyd, are using the hundreds of measurements they’ve taken from ancient skulls to build a new model of airway health for modern humans. They are part of a burgeoning group of pulmonauts exploring novel therapies in breathing, lung expansion, orthodontics, and airway development. Their goal is to help return Gigi, me, and everyone else to our more perfect, ancient forms—the way we were before it all went haywire.
Working with Olsson, I’ll explore techniques to expand the lungs, develop the diaphragm, flood the body with oxygen, hack the autonomic nervous system, stimulate immune response, and reset chemoreceptors in the brain. The first step is the recovery phase I’ve just done. To breathe through my nose, all day and all night.
The interior of the nose, it turned out, is blanketed with erectile tissue, the same flesh that covers the penis, clitoris, and nipples. Noses get erections. Within seconds, they too can engorge with blood and become large and stiff. This happens because the nose is more intimately connected to the genitals than any other organ; when one gets aroused, the other responds. The mere thought of sex for some people causes such severe bouts of nasal erections that they’ll have trouble breathing and will start to sneeze uncontrollably, an inconvenient condition called “honeymoon rhinitis.”
What researchers eventually managed to confirm was that nasal erectile tissue mirrored states of health. It would become inflamed during sickness or other states of imbalance. If the nose became infected, the nasal cycle became more pronounced and switched back and forth quickly.
The right nostril is a gas pedal. When you’re inhaling primarily through this channel, circulation speeds up, your body gets hotter, and cortisol levels, blood pressure, and heart rate all increase. This happens because breathing through the right side of the nose activates the sympathetic nervous system, the “fight or flight” mechanism that puts the body in a more elevated state of alertness and readiness.
Inhaling through the left nostril has the opposite effect: it works as a kind of brake system to the right nostril’s accelerator. The left nostril is more deeply connected to the parasympathetic nervous system, the rest-and-relax side that lowers blood pressure, cools the body, and reduces anxiety. Left-nostril breathing shifts blood flow to the opposite side of the prefrontal cortex, to the area that influences creative thought and plays a role in the formation of mental abstractions and the production of negative emotions.
There’s a yoga practice dedicated to manipulating the body’s functions with forced breathing through the nostrils. It’s called nadi shodhana—in Sanskrit, nadi means “channel” and shodhana means “purification”—or, more commonly, alternate nostril breathing.
It involves placing an index finger over the left nostril and then inhaling and exhaling only through the right. I did this two dozen times after each meal today, to heat up my body and aid my digestion. Before meals, and any other time I wanted to relax, I’d switch sides, repeating the same exercise with my left nostril open.
we checked our measurements. My systolic blood pressure had dropped from 142 ten days ago—a state of stage 2 hypertension—to 124, just a few points from a healthy range. My heart rate variability increased by more than 150 percent, and my carbon dioxide levels rose around 30 percent, placing me squarely within the medically normal zone. Olsson showed similar improvements.
real data from hundreds of real scientific studies that reached the same conclusion as our little experiment. That is: consciously controlling breathing can significantly influence our nervous system function, sleep quality, heartbeat, and blood flow.
In a single breath, more molecules of air will pass through your nose than all the grains of sand on all the world’s beaches—trillions and trillions of them.
As they make their way toward you, they’ll twist and spool like the stars in a van Gogh sky, and they’ll keep twisting and spooling and scrolling as they pass into you, traveling at a clip of about five miles per hour.
What directs this rambling path are turbinates, six maze-like bones (three on each side) that begin at the opening of your nostrils and end just below your eyes. The turbinates are coiled in such a way that if you split them apart, they’d look like a seashell, which...
This highlight has been truncated due to consecutive passage length restrictions.
The lower turbinates at the opening of the nostrils are covered in that pulsing erectile tissue, itself covered in mucous membrane, a nappy sheen of cells that moistens and warms breath to your body temperature while simultaneously filtering out particles and pollutants.
It’s constantly on the move, sweeping along at a rate of about half an inch every minute, more than 60 feet per day. Like a giant conveyor belt, it collects inhaled debris in the nose, then moves all the junk down the throat and into the stomach, where it’s sterilized by stomach acid, delivered to the intestines, and sent out of your body.
Like a field of wheat in the wind, cilia sway with each inhale and exhale, but do so at a fast clip of up to 16 beats per second. Cilia closer to the nostrils gyrate at a different rhythm than those farther along, their movements creating a coordinated wave that keeps mucus moving deeper. The cilia grip is so strong that it can even push against the force of gravity.
Working together, the different areas of the turbinates will heat, clean, slow, and pressurize air so that the lungs can extract more oxygen with each breath. This is why nasal breathing is far more healthy and efficient than breathing through the mouth. As Nayak explained when I first met him, the nose is the silent warrior: the gatekeeper of our bodies, pharmacist to our minds, and weather vane to our emotions.
Around 1500 BCE, the Ebers Papyrus, one of the oldest medical texts ever discovered, offered a description of how nostrils, not the mouth, were supposed to feed air to the heart and lungs. A thousand years later, Genesis 2:7 described how “the Lord God formed man of the dust of the ground, and breathed into his nostrils the breath of life; and man became a living soul.”
A Chinese Taoist text from the eighth century AD noted that the nose was the “heavenly door,” and that breath must be taken in through it. “Never do otherwise,” the text warned, “for breath would be in danger and illness would set in.”
The tribes attributed their vigorous health to a medicine, what Catlin called the “great secret of life.” The secret was breathing. The Native Americans explained to Catlin that breath inhaled through the mouth sapped the body of strength, deformed the face, and caused stress and disease. On the other hand, breath inhaled through the nose kept the body strong, made the face beautiful, and prevented disease.
Twenty years after Catlin explored the West, he set off again, at age 56, to live with indigenous cultures in the Andes, Argentina, and Brazil. He wanted to know if “medicinal” breathing practices extended beyond the Plains. They did. Every tribe Catlin visited over the next several years—dozens of them—shared the same breathing habits.
He wrote about his experiences in The Breath of Life, published in 1862. The book was devoted solely to documenting the wonders of nasal breathing and the hazards of mouthbreathing. Catlin was not only a chronicler of breathing methods; he was a practitioner. Nasal breathing saved his life.
By the time he reached his 30s and first went out West, these problems had become so severe that he’d sometimes spit up blood. His friends were convinced he had lung disease. Every night Catlin feared he would die.
Catlin forced his mouth closed while he slept and always breathed through his nose during waking hours. Soon, there were no more aches, pains, or bleeding.
He recommended his patients tape their mouths shut at night. “The health benefits of nose breathing are undeniable,” he told me. One of the many benefits is that the sinuses release a huge boost of nitric oxide, a molecule that plays an essential role in increasing circulation and delivering oxygen into cells. Immune function, weight, circulation, mood, and sexual function can all be heavily influenced by the amount of nitric oxide in the body.
Eventually I realized that all I or anyone really needed was a postage-stamp-size piece of tape at the center of the lips—a Charlie Chaplin mustache moved down an inch. That’s it.
After much trial and error, I settled on 3M Nexcare Durapore “durable cloth” tape, an all-purpose surgical tape with a gentle adhesive. It was comfortable, had no chemical scent, and didn’t leave residue.
Olsson went from snoring half the night to not snoring for even a minute. His apnea events dropped from 53 to zero.
I flipped to the last page in Catlin’s Breath of Life, the final paragraph he’d ever publish in his long life of research. “And if I were to endeavor to bequeath to posterity the most important Motto which human language can convey, it should be in three words—SHUT-YOUR-MOUTH* . . . . Where I would paint and engrave it, in every Nursery, and on every Bed-post in the Universe, its meaning could not be mistaken. “And if obeyed,” he continued, “its importance would soon be realized.”
Just a few minutes of daily bending and breathing can expand lung capacity. With that extra capacity we can expand our lives. The stretches, called the Five Tibetan Rites, came to the Western world, and to me, by way of writer Peter Kelder, who was known as a lover of “books and libraries, words and poetry.”
However, the lung-expanding stretches he described are rooted in actual exercises that date back to 500 BCE. Tibetans had used these methods for millennia to improve physical fitness, mental health, cardiovascular function, and, of course, extend life.
In the 1980s, researchers with the Framingham Study, a 70-year longitudinal research program focused on heart disease, attempted to find out if lung size really did correlate to longevity. They gathered two decades of data from 5,200 subjects, crunched the numbers, and discovered that the greatest indicator of life span wasn’t genetics, diet, or the amount of daily exercise, as many had suspected. It was lung capacity.
Moderate exercise like walking or cycling has been shown to boost lung size by up to 15 percent.

