Breath: The New Science of a Lost Art
Rate it:
Open Preview
Read between October 31 - October 31, 2022
3%
Flag icon
They told crazy stories, about how they’d breathed in ways that expanded the size of their lungs by 30 percent or more. They told me about an Indian doctor who lost several pounds by simply changing the way he inhaled, and about another man who was injected with the bacterial endotoxin E. coli, then breathed in a rhythmic pattern to stimulate his immune system and destroy the toxins within minutes. They told me about women who put their cancers into remission and monks who could melt circles in the snow around their bare bodies over a period of several hours. It all sounded nuts.
3%
Flag icon
To get a sense of how breathing is regarded by modern medical professionals, think back to your last check-up. Chances are your doctor took your blood pressure, pulse, and temperature, then placed a stethoscope to your chest to assess the health of your heart and lungs. Maybe she discussed diet, taking vitamins, stresses at work. Any issues digesting food? How about sleep? Were the seasonal allergies getting worse? Asthma? What about those headaches? But she likely never checked your respiratory rate. She never checked the balance of oxygen and carbon dioxide in your bloodstream. How you ...more
3%
Flag icon
They discovered that our capacity to breathe has changed through the long processes of human evolution, and that the way we breathe has gotten markedly worse since the dawn of the Industrial Age. They discovered that 90 percent of us—very likely me, you, and almost everyone you know—is breathing incorrectly and that this failure is either causing or aggravating a laundry list of chronic diseases.
3%
Flag icon
On a more inspiring note, some of these researchers were also showing that many modern maladies—asthma, anxiety, attention deficit hyperactivity disorder, psoriasis, and more—could either be reduced or reversed simply by changing the way we inhale and exhale.
3%
Flag icon
No matter what we eat, how much we exercise, how resilient our genes are, how skinny or young or wise we are—none of it will matter unless we’re breathing correctly.
4%
Flag icon
The lack of chewing associated with this soft diet stunted bone development in his dental arches and sinus cavity, leading to chronic nasal congestion. By age 15, patient was subsisting on even softer, highly processed foods consisting mostly of white bread, sweetened fruit juices, canned vegetables, Steak-umms, Velveeta sandwiches, microwave taquitos, Hostess Sno Balls, and Reggie! bars. His mouth had become so underdeveloped it could not accommodate 32 permanent teeth; incisors and canines grew in crooked, requiring extractions, braces, retainers, and headgear to straighten. Three years of ...more
5%
Flag icon
For the past century, the prevailing belief in Western medicine was that the nose was more or less an ancillary organ. We should breathe out of it if we can, the thinking went, but if not, no problem. That’s what the mouth is for. Many doctors, researchers, and scientists still support this position.
5%
Flag icon
Forty percent of today’s population suffers from chronic nasal obstruction, and around half of us are habitual mouthbreathers, with females and children suffering the most. The causes are many: dry air to stress, inflammation to allergies, pollution to pharmaceuticals.
5%
Flag icon
When mouths don’t grow wide enough, the roof of the mouth tends to rise up instead of out, forming what’s called a V-shaped or high-arched palate. The upward growth impedes the development of the nasal cavity, shrinking it and disrupting the delicate structures in the nose. The reduced nasal space leads to obstruction and inhibits airflow.
5%
Flag icon
When the nasal cavity gets congested, airflow decreases and bacteria flourish. These bacteria replicate and can lead to infections and colds and more congestion. Congestion begets congestion, which gives us no other option but to habitually breathe from the mouth.
6%
Flag icon
Oxygen, it turned out, produced 16 times more energy than carbon dioxide. Aerobic life forms used this boost to evolve, to leave the sludge-covered rocks behind and grow larger and more complex.
6%
Flag icon
Mammals grew noses to warm and purify the air, throats to guide air into lungs, and a network of sacs that would remove oxygen from the atmosphere and transfer it into the blood.
6%
Flag icon
I’d been feeling these cracks for much of my life, and chances are you have, too: stuffy noses, snoring, some degree of wheezing, asthma, allergies, and the rest. I’d always thought they were a normal part of being human. Nearly everyone I knew suffered from one problem or another.
6%
Flag icon
show the symmetry of each specimen, how well proportioned the mouth was relative to the face, the nose to the palate, and, to a large extent, how well the people who owned these skulls might have breathed.
6%
Flag icon
even though none of the ancient people ever flossed, or brushed, or saw a dentist, they all had straight teeth.
6%
Flag icon
The forward facial growth and large mouths also created wider airways. These people very likely never snored or had sleep apnea or sinusitis or many other chronic respiratory problems that affect modern populations. They did not because they could not. Their mouths were far too large, and their airways too wide for anything to block them. They breathed easy.
6%
Flag icon
Of the 5,400 different species of mammals on the planet, humans are now the only ones to routinely have misaligned jaws, overbites, underbites, and snaggled teeth, a condition formally called malocclusion.
7%
Flag icon
The quickly growing brain needed space to stretch out, and it took it from the front of our faces, home to sinuses, mouths, and airways. Over time, muscles at the center of the face loosened, and bones in the jaw weakened and grew thinner. The face shortened and the mouth shrank, leaving behind a bony protuberance that replaced the squashed snout of our ancestors. This new feature was ours alone and distinguished us from other primates: the protruding nose.
7%
Flag icon
In colder climates, our noses would grow narrower and longer to more efficiently heat up air before it entered our lungs; our skin would grow lighter to take in more sunshine for production of vitamin D.
7%
Flag icon
Sapiens would become the only animals, and the only human species, that could easily choke on food and die.
9%
Flag icon
He’d spent the last 20 years squirting various drugs up his nostrils, but they became less effective over time. Now he’d developed chronic respiratory problems.
9%
Flag icon
At the final, 200-watt stage, one subject who had been mouthbreathing at a rate of 47 breaths per minute was nasal breathing at a rate of 14 breaths a minute.
9%
Flag icon
Simply training yourself to breathe through your nose, Douillard reported, could cut total exertion in half and offer huge gains in endurance. The athletes felt invigorated while nasal breathing rather than exhausted.
9%
Flag icon
Anaerobic energy is generated only with glucose (a simple sugar), and it’s quicker and easier for our bodies to access. It’s a kind of backup system and turbo boost when the body doesn’t have enough oxygen. But anaerobic energy is inefficient and can be toxic, creating an excess of lactic acid.
9%
Flag icon
When we run our cells aerobically with oxygen, we gain some 16 times more energy efficiency over anaerobic. The key for exercise, and for the rest of life, is to stay in that energy-efficient, clean-burning, oxygen-eating aerobic zone for the vast majority of time during exercise and at all times during rest.
10%
Flag icon
Mouthbreathing, it turns out, changes the physical body and transforms airways, all for the worse. Inhaling air through the mouth decreases pressure, which causes the soft tissues in the back of the mouth to become loose and flex inward, creating less space and making breathing more difficult. Mouthbreathing begets more mouthbreathing. Inhaling from the nose has the opposite effect. It forces air against all those flabby tissues at the back of the throat, making the airways wider and breathing easier. After a while, these tissues and muscles get “toned” to stay in this opened and wide ...more
10%
Flag icon
Whenever oxygen falls below 90 percent, the blood can’t carry enough of it to support body tissues. If this goes on too long, it can lead to heart failure, depression, memory problems, and early death. My snoring and sleep apnea are still far below that of any medically diagnosed condition, but these scores were getting worse the longer I stayed plugged up.
10%
Flag icon
Mouthbreathing causes the body to lose 40 percent more water. I felt this all night, every night, waking up constantly parched and dry. You’d think this moisture loss would decrease the need to urinate, but, oddly, the opposite was true.
10%
Flag icon
But if the body has inadequate time in deep sleep, as it does when it experiences chronic sleep apnea, vasopressin won’t be secreted normally. The kidneys will release water, which triggers the need to urinate and signals to our brains that we should consume more liquid. We get thirsty, and we need to pee more.
10%
Flag icon
And contrary to what most of us might think, no amount of snoring is normal, and no amount of sleep apnea comes without risks of serious health effects.
11%
Flag icon
Ninety percent of children have acquired some degree of deformity in their mouths and noses. Forty-five percent of adults snore occasionally when sleeping, and a quarter of the population snores constantly.
12%
Flag icon
The nose is crucial because it clears air, heats it, and moistens it for easier absorption. Most of us know this. But what so many people never consider is the nose’s unexpected role in problems like erectile dysfunction. Or how it can trigger a cavalcade of hormones and chemicals that lower blood pressure and ease digestion. How it responds to the stages of a woman’s menstrual cycle. How it regulates our heart rate, opens the vessels in our toes, and stores memories. How the density of your nasal hairs helps determine whether you’ll suffer from asthma.
12%
Flag icon
The interior of the nose, it turned out, is blanketed with erectile tissue, the same flesh that covers the penis, clitoris, and nipples. Noses get erections. Within seconds, they too can engorge with blood and become large and stiff. This happens because the nose is more intimately connected to the genitals than any other organ; when one gets aroused, the other responds. The mere thought of sex for some people causes such severe bouts of nasal erections that they’ll have trouble breathing and will start to sneeze uncontrollably, an inconvenient condition called “honeymoon rhinitis.” As sexual ...more
12%
Flag icon
The right nostril is a gas pedal. When you’re inhaling primarily through this channel, circulation speeds up, your body gets hotter, and cortisol levels, blood pressure, and heart rate all increase. This happens because breathing through the right side of the nose activates the sympathetic nervous system, the “fight or flight” mechanism that puts the body in a more elevated state of alertness and readiness. Breathing through the right nostril will also feed more blood to the opposite hemisphere of the brain, specifically to the prefrontal cortex, which has been associated with logical ...more
13%
Flag icon
Our bodies operate most efficiently in a state of balance, pivoting between action and relaxation, daydreaming and reasoned thought. This balance is influenced by the nasal cycle, and may even be controlled by it. It’s a balance that can also be gamed.
13%
Flag icon
In a single breath, more molecules of air will pass through your nose than all the grains of sand on all the world’s beaches—trillions and trillions of them.
13%
Flag icon
The turbinates are coiled in such a way that if you split them apart, they’d look like a seashell, which is how they got their other name, nasal concha, after the conch shell. Mollusks use their elaborately designed shells to filter impurities and keep invaders out. So do we. The lower turbinates at the opening of the nostrils are covered in that pulsing erectile tissue, itself covered in mucous membrane, a nappy sheen of cells that moistens and warms breath to your body temperature while simultaneously filtering out particles and pollutants. All these invaders could cause infection and ...more
13%
Flag icon
Like a giant conveyor belt, it collects inhaled debris in the nose, then moves all the junk down the throat and into the stomach, where it’s sterilized by stomach acid, delivered to the intestines, and sent out of your body.
13%
Flag icon
Working together, the different areas of the turbinates will heat, clean, slow, and pressurize air so that the lungs can extract more oxygen with each breath. This is why nasal breathing is far more healthy and efficient than breathing through the mouth. As Nayak explained when I first met him, the nose is the silent warrior: the gatekeeper of our bodies, pharmacist to our minds, and weather vane to our emotions.
14%
Flag icon
He told me that mouthbreathing contributed to periodontal disease and bad breath, and was the number one cause of cavities, even more damaging than sugar consumption, bad diet, or poor hygiene.
14%
Flag icon
“The health benefits of nose breathing are undeniable,” he told me. One of the many benefits is that the sinuses release a huge boost of nitric oxide, a molecule that plays an essential role in increasing circulation and delivering oxygen into cells. Immune function, weight, circulation, mood, and sexual function can all be heavily influenced by the amount of nitric oxide in the body. (The popular erectile dysfunction drug sildenafil, known by the commercial name Viagra, works by releasing nitric oxide into the bloodstream, which opens the capillaries in the genitals and elsewhere.) Nasal ...more
15%
Flag icon
Like other parts of the body, the nasal cavity responds to whatever inputs it receives. When the nose is denied regular use, it will atrophy. This is what happened to Kearney and many of her patients, and to so much of the general population. Snoring and sleep apnea often follow. Keeping the nose constantly in use, however, trains the tissues inside the nasal cavity and throat to flex and stay open. Kearney, Burhenne, and so many of their patients healed themselves this way: by breathing from their noses, all day and all night.
16%
Flag icon
The smaller and less efficient lungs became, the quicker subjects got sick and died. The cause of deterioration didn’t matter. Smaller meant shorter. But larger lungs equaled longer lives. Our ability to breathe full breaths, according to the researchers, appears to be “literally a measure of living capacity.”
16%
Flag icon
The lungs themselves will lose about 12 percent of capacity from the age of 30 to 50, and will continue declining even faster as we get older, with women faring worse than men. If we make it to 80, we’ll be able to take in 30 percent less air than we did in our 20s. We’re forced to breathe faster and harder. This breathing habit leads to chronic problems like high blood pressure, immune disorders, and anxiety.
17%
Flag icon
What Stough had discovered, and what Martin had learned, was that the most important aspect of breathing wasn’t just to take in air through the nose. Inhaling was the easy part. The key to breathing, lung expansion, and the long life that came with it was on the other end of respiration. It was in the transformative power of a full exhalation.
17%
Flag icon
Stough’s students had thin and weak voices because, he believed, they had thin and weak exhalations.
17%
Flag icon
Emphysema is a gradual deterioration of lung tissue marked by chronic bronchitis and coughing. The lungs become so damaged that people with the disease can no longer absorb oxygen effectively. They’re forced to take several short breaths very fast, often breathing in far more air than they need, but still feel out of breath.
17%
Flag icon
Emphysema, he realized, was a disease of exhalation. The patients were suffering not because they couldn’t get fresh air into their lungs, but because they couldn’t get enough stale air out.
17%
Flag icon
What influences much of the speed and strength of this circulation is the thoracic pump, the name for the pressure that builds inside the chest when we breathe. As we inhale, negative pressure draws blood into the heart; as we exhale, blood shoots back out into the body and lungs, where it recirculates. It’s similar to the way the ocean floods into shore, then ebbs out. And what powers the thoracic pump is the diaphragm, the muscle that sits beneath the lungs in the shape of an umbrella. The diaphragm lifts during exhalations, which shrinks the lungs, then it drops back down to expand them ...more
18%
Flag icon
Breathing this way wasn’t necessary, Martin told me. Our bodies can survive on short and clipped breaths for decades, and many of us do. That doesn’t mean it’s good for us. Over time, shallow breathing will limit the range of our diaphragms and lung capacity and can lead to the high-shouldered, chest-out, neck-extended posture common in those with emphysema, asthma, and other respiratory problems.
« Prev 1 3