In elliptic geometry, for example, Euclid’s parallel postulate is replaced by the assumption that through a given point outside a line no parallel to it can be drawn. Now consider the question: Is the elliptic set of postulates consistent? The postulates are apparently not true of the space of ordinary experience. How, then, is their consistency to be shown? How can one prove they will not lead to contradictory theorems? Obviously the question is not settled by the fact that the theorems already deduced do not contradict each other—for the possibility remains that the very next theorem to be
...more