It’s easiest to design an adversarial attack when you have access to the inner workings of the algorithm. But it turns out that you can fool a stranger’s algorithm, too. Researchers at LabSix have found that they can design adversarial attacks even when they don’t have access to the inner connections of the neural network. Using a trial-and-error method, they could fool neural nets when they had access only to their final decisions and even when they were allowed only a limited number of tries (100,000, in this case).