Adam Glantz

58%
Flag icon
But being practical, we can also look at the difference between the predicted value (Y ′) and the actual value (Y) when we first compute the formula of the regression line. For example, if the formula for the regression line is Y ′ = 0.704X + 0.719, the predicted Y (or Y ′) for an X value of 2.8 is 0.704(2.8) + 0.719, or 2.69. We know that the actual Y value that corresponds to an X value is 3.5 (from the data set shown in Table 16.1). The difference between 3.5 and 2.69 is 0.81, and that’s the size of the error in prediction. Another measure of error that you could use is the coefficient of ...more
This highlight has been truncated due to consecutive passage length restrictions.
Statistics for People Who (Think They) Hate Statistics
Rate this book
Clear rating