A Type II error (Cell 3 in the chart) occurs when you incorrectly accept a false null hypothesis. For example, there may really be differences between the populations represented by the sample groups, but you mistakenly conclude there are not. When talking about the significance of a finding, you might hear the word power used. Power is a type of probability statement of how well a statistical test can detect and reject a null hypothesis when it is false. Mathematically, it’s calculated by subtracting the proportional chance of making a Type II error from 1.0. A more powerful test is always
...more

