The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science
Rate it:
Open Preview
36%
Flag icon
The first step is for a person having an OCD attack to relabel what is happening to him, so that he realizes that what he is experiencing is not an attack of germs, AIDS, or battery acid but an episode of OCD. He should remember that brain lock occurs in the three parts of the brain. As a therapist, I encourage OCD patients to make the following summary for themselves: “Yes, I do have a real problem right now. But it is not germs, it is my OCD.” This relabeling allows them to get some distance from the content of the obsession and view it in somewhat the same way Buddhists view suffering in ...more
Rigoberto Ruiz
seperate the self from the sickness and then recognize that actions can be taken to mitigate the effects
37%
Flag icon
it. I suggest to my patients that they think of the use-it-or-lose-it principle. Each moment they spend thinking of the symptom—believing that germs are threatening them—they deepen the obsessive circuit. By bypassing it, they are on the road to losing it. With obsessions and compulsions, the more you do it, the more you want to do it; the less you do it, the less you want to do it.
Rigoberto Ruiz
hobbs/ hebbs axom to desensitize/forget certain disorders that are cause by fixation (OCD).
37%
Flag icon
Emma’s blindness has reorganized her brain and her life. A number of us who were at the dinner are interested in literature, but since she has gone blind, Emma has done more reading than any of us. A computer program from Kurzweil Educational Systems reads books aloud to her in a monotone that pauses for commas, stops for periods, and rises in pitch for questions. This computer voice is so rapid, I cannot make out a single word. But Emma has gradually learned to listen at a faster and faster pace, so she is now reading at about 340 words a minute and is marching through all the great classics. ...more
Rigoberto Ruiz
this is actually what im researching. Crazy how that works
39%
Flag icon
Not all phantoms are painful. After Ramachandran published his discoveries, amputees began to seek him out. Several leg amputees reported, with much shame, that when they had sex, they often experienced their orgasms in their phantom legs and feet. One man confessed that because his leg and foot were so much larger than his genitals, the orgasm was “much bigger” than it used to be.
Rigoberto Ruiz
what we learned in class regarding "footgasms"
39%
Flag icon
Ramachandran argued that the claim made perfect neuroscientific sense. The Penfield brain map shows the genitals next to the feet, and since the feet no longer receive input, the genital maps likely invade the foot maps, so when the genitals experience pleasure, so do the phantom feet. Ramachandran began to wonder whether some people’s erotic preoccupation with feet, or foot fetishes, might be due in part to the proximity of feet and genitals on the brain map. Other erotic enigmas fell into place. An Italian physician, Dr. Salvatore Aglioti, reported that some women who have had mastectomies ...more
Rigoberto Ruiz
possible fetishes and overly "non-sexual" body part sensitivity
39%
Flag icon
Pain and body image are closely related. We always experience pain as projected into the body. When you throw your back out, you say, “My back is killing me!” and not, “My pain system is killing me.” But as phantoms show, we don’t need a body part or even pain receptors to feel pain. We need only a body image, produced by our brain maps. People with actual limbs don’t usually realize this, because the body images of our limbs are perfectly projected onto our actual limbs, making it impossible to distinguish our body image from our body. “Your own body is a phantom,” says Ramachandran, “one ...more
Rigoberto Ruiz
the body is an accuracte representation of the self however not for all this was constructed to make sense of stimuli. This also explains the distortion that one may perceive of the body.
40%
Flag icon
Distorted body images are common and demonstrate that there is a difference between the body image and the body itself. Anorexics experience their bodies as fat when they are on the edge of starvation; people with distorted body images, a condition called “body dysmorphic disorder,” can experience a part of the body that is perfectly within the norm as defective. They think their ears, nose, lips, breasts, penis, vagina, or thighs are too large or too small, or just “wrong,” and they feel tremendous shame. Marilyn Monroe experienced herself as having many bodily defects. Such people often seek ...more
Rigoberto Ruiz
an interesting idea for people that believe that may have gender dismorphia.
46%
Flag icon
The team showed that a short-term memory becomes long-term when a chemical in the neuron, called protein kinase A, moves from the body of the neuron into its nucleus, where genes are stored.
Rigoberto Ruiz
in sea snails
46%
Flag icon
The first plastic concept Freud developed is the law that neurons that fire together wire together, usually called Hebb’s law, though Freud proposed it in 1888, sixty years before Hebb. Freud stated that when two neurons fire simultaneously, this firing facilitates their ongoing association. Freud emphasized that what linked neurons was their firing together in time, and he called this phenomenon the law of association by simultaneity.
Rigoberto Ruiz
Freud thought of hebbs axom before hebb (60years) law of simultanity
47%
Flag icon
The left hemisphere generally processes the verbal-linguistic elements of speech, as opposed to the emotional-musical ones, and analyzes problems using conscious processing. Babies have a larger right hemisphere, up to the end of the second year, and because the left hemisphere is only beginning its growth spurt, our right hemisphere dominates the brain for the first three years of our lives. Twenty-six-month-olds are complex, “right-brained” emotional creatures but cannot talk about their experiences, a left-brain function. Brain scans show that during the first two years of life, the mother ...more
Rigoberto Ruiz
Born right brain centered
47%
Flag icon
Explicit memory was discovered through observation of the most famous memory case in neuroscience—a young man named H.M., who had had severe epilepsy. To treat it, his doctors cut out a part of his brain the size of the human thumb, the hippocampus. (There are actually two “hippocampi,” one in each hemisphere, and both were removed.) After surgery H.M. at first seemed normal. He recognized his family and could conduct conversations. But it was soon apparent that since his operation, he could not learn any new facts. When his doctors visited him, chatted, left, and then returned again, he had ...more
Rigoberto Ruiz
Hipppcampus means of creating long term memory
49%
Flag icon
This doubt was once so widespread that no research was conducted to investigate the matter, but new studies show that infants in the first and second years can store such facts and events, including traumatic ones. While the explicit memory system is not robust in the first few years, research by Carolyn Rovee-Collier and others shows it exists, even in preverbal or barely verbal infants.
Rigoberto Ruiz
infintile amnesia is not complete
49%
Flag icon
The newest brain scans show that when we dream, that part of the brain that processes emotion, and our sexual, survival, and aggressive instincts, is quite active. At the same time the prefrontal cortex system, which is responsible for inhibiting our emotions and instincts, shows lower activity. With instincts turned up and inhibitions turned down, the dreaming brain can reveal impulses that are normally blocked from awareness. Scores of studies show that sleep affects plastic change by allowing us to consolidate learning and memory. When we learn a skill during the day, we will be better at ...more
Rigoberto Ruiz
sleeping is a egitimate study
50%
Flag icon
But there is another possible cause. It has recently been discovered that early childhood trauma causes massive plastic change in the hippocampus, shrinking it so that new, long-term explicit memories cannot form. Animals removed from their mothers let out desperate cries, then enter a turned-off state—as Spitz’s infants did—and release a stress hormone called “glucocorticoid.” Glucocorticoids kill cells in the hippocampus so that it cannot make the synaptic connections in neural networks that make learning and explicit long-term memory possible. These early stresses predispose these ...more
Rigoberto Ruiz
many anxiety laden individuals may suffer this
50%
Flag icon
Depression, high stress, and childhood trauma all release glucocorticoids and kill cells in the hippocampus, leading to memory loss. The longer people are depressed, the smaller their hippocampus gets. The hippocampus of depressed adults who suffered prepubertal childhood trauma is 18 percent smaller than that of depressed adults without childhood trauma—a downside of the plastic brain: we literally lose essential cortical real estate in response to illness.
Rigoberto Ruiz
effects of depression on the hippocampus
50%
Flag icon
Antidepressant medications increase the number of stem cells that become new neurons in the hippocampus. Rats given Prozac for three weeks had a 70 percent increase in the number of cells in their hippocampi. It usually takes three to six weeks for antidepressants to work in humans—perhaps coincidentally, the same amount of time it takes for newly born neurons in the hippocampus to mature, extend their projections, and connect with other neurons. So we may, without knowing it, have been helping people get out of depression by using medications that foster brain plasticity. Since people who ...more
Rigoberto Ruiz
prozac hippocampus growth on neuroplastic principles
52%
Flag icon
To find out if neurogenesis can strengthen mental capacity, Gage’s team has set out to understand how to increase the production of neuronal stem cells. Gage’s colleague Gerd Kempermann raised aging mice in enriched environments, filled with mice toys such as balls, tubes, and running wheels, for only forty-five days. When Kempermann sacrificed the mice and examined their brains, he found they had a 15 percent increase in the volume of their hippocampi and forty thousand new neurons, also a 15 percent increase, compared with mice raised in standard cages. Mice live to about two years. When the ...more
Rigoberto Ruiz
neurogenesis can be accessed at an older age though not as fast as pre pruning age. continues to be more effeciant in a stimulating enviroment.
52%
Flag icon
Gage’s colleague Henriette van Praag showed that the most effective contributor to increased proliferation of new neurons was the running wheel. After a month on the wheel, the mice had doubled the number of new neurons in the hippocampus. Mice don’t really run on running wheels, Gage told me; it only looks like they do, because the wheel provides so little resistance. Rather, they walk quickly. Gage’s theory is that in a natural setting, long-term fast walking would take the animal into a new, different environment that would require new learning, sparking what he calls “anticipatory ...more
Rigoberto Ruiz
fast walking/ jogging/ running promotes neurogenesis on principle since evolutionarily speaking it would only be done on to experience and not hone (resource managment). It does not nessecitate actual experience (see rats).
52%
Flag icon
That we still have some neurogenesis in old age is not to deny that our brains, like our other organs, gradually decline. But even in the midst of this deterioration, the brain undergoes massive plastic reorganization, possibly to adjust for the brain’s losses. Researchers Mellanie Springer and Cheryl Grady of the University of Toronto have shown that as we age, we tend to perform cognitive activities in different lobes of the brain from those we use when we are young. When Springer and Grady’s young subjects, aged fourteen to thirty years, did a variety of cognitive tests, brain scans showed ...more
Rigoberto Ruiz
we uses differnet lobes for cognitive tasks pre 65 and post 65 temporal/ frontal respectively..
52%
Flag icon
Another major reorganization of the brain occurs as we age. As we have seen, many brain activities are “lateralized.” Much of speech is a left-hemispheric function, while visual-spatial processing is a right-hemispheric function, a phenomenon called “hemispheric asymmetry.” But recent research by Duke University’s Roberto Cabeza and others shows that some lateralization is lost as we age. Prefrontal activities that took place in one hemisphere now take place in both. While we don’t know for sure why this happens, one theory is that as we age and one of our hemispheres starts to become less ...more
Rigoberto Ruiz
less task hemispheric isolation (lateralization) as we age. Likely due to resource effectiveness compensation.
53%
Flag icon
Vaillant concluded that old age is not simply a process of decline and decay, as many younger people think. Older people often develop new skills and are often wiser and more socially adept than they were as younger adults. These elderly people are actually less prone to depression than younger people and usually do not suffer from incapacitating disease until they get their final illness.
Rigoberto Ruiz
older people typically do not suffer from severe illness until thier fatal one? interesting
53%
Flag icon
The woman joking with me across the table was born with only half her brain. Something catastrophic happened while she was in her mother’s womb, though no one knows what for sure. It wasn’t a stroke, because stroke destroys healthy tissue, and Michelle Mack’s left hemisphere simply never developed. Her doctors speculated that her left carotid artery, which supplies blood to the left hemisphere, may have become blocked while Michelle was still a fetus, preventing that hemisphere from forming. At birth the doctors gave her the usual tests and told her mother, Carol, that she was a normal baby. ...more
Rigoberto Ruiz
missing an entire hemisphere and living a seemingly normal life.
56%
Flag icon
Grafman wanted to understand what factors most affected recovery from frontal lobe injuries, so he began to examine how a soldier’s health, genetics, social status, and intelligence prior to his injury might predict his chance of recovery. Since everyone in the service has to take the Armed Forces Qualifications Test (roughly equivalent to an IQ test), Grafman could study the relationship of preinjury intelligence to that after recovery. He found that aside from the size of the wounds and the location of the injury, a soldier’s IQ was a very important predictor of how well he would recover his ...more
Rigoberto Ruiz
Iq is associated with faster recovery periods.
56%
Flag icon
From his research Grafman has identified four kinds of plasticity. The first is “map expansion,” described above, which occurs largely at the boundaries between brain areas as a result of daily activity. The second is “sensory reassignment,” which occurs when one sense is blocked, as in the blind. When the visual cortex is deprived of its normal inputs, it can receive new inputs from another sense, such as touch. The third is “compensatory masquerade,” which takes advantage of the fact that there’s more than one way for your brain to approach a task. Some people use visual landmarks to get ...more
Rigoberto Ruiz
Four kinds of plasticity.
57%
Flag icon
Migration of a mental function to the opposite hemisphere can happen because early in development our hemispheres are quite similar, and only later do they gradually specialize. Brain scans of babies in their first year show that they process new sounds in both hemispheres. By age two they usually process these new sounds in the left hemisphere, which has begun to specialize in speech. Grafman wonders whether visual-spatial ability, like language in babies, is initially present in both hemispheres and then inhibited in the left as the brain specializes. In other words, each hemisphere tends to ...more
Rigoberto Ruiz
hemispheric lateralization develops given circumstances rather than hardwired
57%
Flag icon
A dramatic example has been described by Dr. Bruce Miller, a professor of neurology at the University of California, San Francisco, who has shown that some people who develop frontotemporal lobe dementia in the left side of their brain lose their ability to understand the meaning of words but spontaneously develop unusual artistic, musical, and rhyming skills—skills usually processed in the right temporal and parietal lobes. Artistically, they become particularly good at drawing details. Miller argues that the left hemisphere normally acts like a bully, inhibiting and suppressing the right. As ...more
Rigoberto Ruiz
cross hemispheric communication works to communicate ideas while simultaniously normalizing them. Thus when one is stricken the others qualities tend to manifest themselves to the extreme.