A related error is to pay too much attention to P(X|A) and not enough to P(X|¬A) when determining how much evidence X is for A. The degree to which a result X is evidence for A depends not only on the strength of the statement we’d expect to see result X if A were true, but also on the strength of the statement we wouldn’t expect to see result X if A weren’t true. For example, if it is raining, this very strongly implies the grass is wet—P(wetgrass|rain) ≈ 1—but seeing that the grass is wet doesn’t necessarily mean that it has just rained; perhaps the sprinkler was turned on, or you’re looking
...more