More on this book
Community
Kindle Notes & Highlights
the Greeks knew from their travels that the North Star appeared lower in the sky when viewed in the south than it did in more northerly regions. (Since the North Star lies over the North Pole, it appears to be directly above an observer at the North Pole, but to someone looking from the equator, it appears to lie just at the horizon. From the difference in the apparent position of the North Star in Egypt and Greece, Aristotle even quoted an estimate that the distance around the earth was 400,000 stadia.
The earth stood at the center, surrounded by eight spheres that carried the moon, the sun, the stars, and the five planets known at the time, Mercury, Venus, Mars, Jupiter, and Saturn (Fig. 1.1). The planets themselves moved on smaller circles attached to their respective spheres in order to account for their rather complicated observed paths in the sky. The outermost sphere carried the so-called fixed stars, which always stay in the same positions relative to each other but which rotate together across the sky. What lay beyond the last sphere was never made very clear, but it certainly was
...more
It was adopted by the Christian church as the picture of the universe that was in accordance with Scripture, for it had the great advantage that it left lots of room outside the sphere of fixed stars for heaven and hell.
St. Augustine accepted a date of about 5000 B.C. for the Creation of the universe according to the book of Genesis. (It is interesting that this is not so far from the end of the last Ice Age, about 10,000 B.C., which is when archaeologists tell us that civilization really began.)
But in 1929, Edwin Hubble made the landmark observation that wherever you look, distant galaxies are moving rapidly away from us. In other words, the universe is expanding.
This means that at earlier times objects would have been closer together. In fact, it seemed that there was a time, about ten or twenty thousand million years ago, when they were all at exactly the same place and when, therefore, the density of the universe was infinite. This discovery finally brought the question of the beginning of the universe into the realm of science.
expanding universe does not preclude a creator, but it does place limits on when he might have carried out his job!
A theory is a good theory if it satisfies two requirements. It must accurately describe a large class of observations on the basis of a model that contains only a few arbitrary elements, and it must make definite predictions about the results of future observations.
Any physical theory is always provisional, in the sense that it is only a hypothesis: you can never prove it. No matter how many times the results of experiments agree with some theory, you can never be sure that the next time the result will not contradict the theory. On the other hand, you can disprove a theory by finding even a single observation that disagrees with the predictions of the theory.
The eventual goal of science is to provide a single theory that describes the whole universe.
However, the approach most scientists actually follow is to separate the problem into two parts. First, there are the laws that tell us how the universe changes with time. (If we know what the universe is like at any one time, these physical laws tell us how it will look at any later time.) Second, there is the question of the initial state of the universe.
Today scientists describe the universe in terms of two basic partial theories—the general theory of relativity and quantum mechanics.
The general theory of relativity describes the force of gravity and the large-scale structure of the universe, that is, the structure on scales from only a few miles to as large as a million million million million (1 with twenty-four zeros after it) miles, the size of the observable universe. Quantum mechanics, on the other hand, deals with phenomena on extremely small scales, such as a millionth of a millionth of an inch.
Unfortunately, however, these two theories are known to be inconsistent with each other—they cannot both be correct. One of the major endeavors in physics today, and the major theme of this book, is the search for a new theory that will incorporate them both—a quantum theory of gravity. We do not yet have such a theory, and we may still be a long way from having one, but we do already know many of the properties that it must have. And we shall se...
This highlight has been truncated due to consecutive passage length restrictions.
Now, if you believe that the universe is not arbitrary, but is governed by definite laws, you ultimately have to combine the partial theories into a complete unified theory...
This highlight has been truncated due to consecutive passage length restrictions.
But there is a fundamental paradox in the search for such a complete unified theory. The ideas about scientific theories outlined above assume we are rational beings who are free to observe the universe as we want and to draw logical deductions from what we see. In such a scheme it is reasonable to suppose that we might progress ever closer toward the laws that govern our universe. Yet if there really is a complete unified theory, it would also presumably determine our actions. And so the theory itself would determine the outcome of our search for it! And why should it determine t...
This highlight has been truncated due to consecutive passage length restrictions.
If one drops two bodies that don’t have much air resistance, such as two different lead weights, they fall at the same rate.
The fundamental postulate of the theory of relativity, as it was called, was that the laws of science should be the same for all freely moving observers, no matter what their speed.
Only light, or other waves that have no intrinsic mass, can move at the speed of light.
We must accept that time is not completely separate from and independent of space, but is combined with it to form an object called space-time.
Einstein made the revolutionary suggestion that gravity is not a force like other forces, but is a consequence of the fact that space-time is not flat, as had been previously assumed: it is curved, or “warped,” by the distribution of mass and energy in it. Bodies like the earth are not made to move on curved orbits by a force called gravity; instead, they follow the nearest thing to a straight path in a curved space, which is called a geodesic.
The nearest star, called Proxima Centauri, is found to be about four light-years away (the light from it takes about four years to reach earth), or about twenty-three million million miles.
Most of the other stars that are visible to the naked eye lie within a few hundred light-years of us. Our sun, for comparison, is a mere eight light-minutes away! The visible stars appear spread all over the night sky, but are particularly concentrated in one band, which we call the Milky Way.
Our modern picture of the universe dates back to only 1924, when the American astronomer Edwin Hubble demonstrated that ours was not the only galaxy. There were in fact many others, with vast tracts of empty space between them.
The discovery that the universe is expanding was one of the great intellectual revolutions of the twentieth century.
With hindsight, it is easy to wonder why no one had thought of it before. Newton, and others, should have realized that a static universe would soon start to contract under the influence of gravity.
Even Einstein, when he formulated the general theory of relativity in 1915, was so sure that the universe had to be static that he modified his theory to make this possible, introducing a so-called cosmological constant into his equations. Einstein introduced a new “antigravity” force, which, unlike other forces, did not come from any particular source but was built into the very fabric of space-time. He claimed that space-time had an inbuilt tendency to expand, and this could be made to balance exactly the attraction of all the matter in the universe, so that a static universe would result.
Now at first sight, all this evidence that the universe looks the same whichever direction we look in might seem to suggest there is something special about our place in the universe. In particular, it might seem that if we observe all other galaxies to be moving away from us, then we must be at the center of the universe.
There is, however, an alternate explanation: the universe might look the same in every direction as seen from any other galaxy too.
Many people do not like the idea that time has a beginning, probably because it smacks of divine intervention. (The Catholic Church, on the other hand, seized on the big bang model and in 1951 officially pronounced it to be in accordance with the Bible.)
A star is formed when a large amount of gas (mostly hydrogen) starts to collapse in on itself due to its gravitational attraction. As it contracts, the atoms of the gas collide with each other more and more frequently and at greater and greater speeds—the gas heats up. Eventually, the gas will be so hot that when the hydrogen atoms collide they no longer bounce off each other, but instead coalesce to form helium. The heat released in this reaction, which is like a controlled hydrogen bomb explosion, is what makes the star shine.
There are some solutions of the equations of general relativity in which it is possible for our astronaut to see a naked singularity: he may be able to avoid hitting the singularity and instead fall through a “wormhole” and come out in another region of the universe. This would offer great possibilities for travel in space and time, but unfortunately it seems that these solutions may all be highly unstable; the least disturbance, such as the presence of an astronaut, may change them so that the astronaut could not see the singularity until he hit it and his time came to an end.
black holes are not really black after all: they glow like a hot body, and the smaller they are, the more they glow. So, paradoxically, smaller black holes might actually turn out to be easier to detect than large ones!
However, the laws do not tell us what the universe should have looked like when it started—it would still be up to God to wind up the clockwork and choose how to start it off. So long as the universe had a beginning, we could suppose it had a creator. But if the universe is really completely self-contained, having no boundary or edge, it would have neither beginning nor end: it would simply be. What place, then, for a creator?
CHAPTER 9 THE ARROW OF TIME In previous chapters we have seen how our views of the nature of time have changed over the years. Up to the beginning of this century people believed in an absolute time. That is, each event could be labeled by a number called “time” in a unique way, and all good clocks would agree on the time interval between two events. However, the discovery that the speed of light appeared the same to every observer, no matter how he was moving, led to the theory of relativity—and in that one had to abandon the idea that there was a unique absolute time. Instead, each observer
...more
In 1935, Einstein and Nathan Rosen wrote a paper in which they showed that general relativity allowed what they called “bridges,” but which are now known as wormholes. The Einstein-Rosen bridges didn’t last long enough for a spaceship to get through: the ship would run into a singularity as the wormhole pinched off. However, it has been suggested that it might be possible for an advanced civilization to keep a wormhole open.
However, I think that any visit by aliens or people from the future would be much more obvious and, probably, much more unpleasant. If they are going to reveal themselves at all, why do so only to those who are not regarded as reliable witnesses? If they are trying to warn us of some great danger, they are not being very effective.
A possible way to explain the absence of visitors from the future would be to say that the past is fixed because we have observed it and seen that it does not have the kind of warping needed to allow travel back from the future.
The alternative histories hypothesis sounds rather like Richard Feynman’s way of expressing quantum theory as a sum over histories, which was described in Chapters 4 and 8. This said that the universe didn’t just have a single history: rather it had every possible history, each with its own probability.
There really is a complete unified theory (or a collection of overlapping formulations), which we will someday discover if we are smart enough. There is no ultimate theory of the universe, just an infinite sequence of theories that describe the universe more and more accurately. There is no theory of the universe: events cannot be predicted beyond a certain extent but occur in a random and arbitrary manner.
we have, as yet, had little success in predicting human behavior from mathematical equations! So even if we do find a complete set of basic laws, there will still be in the years ahead the intellectually challenging task of developing better approximation methods, so that we can make useful predictions of the probable outcomes in complicated and realistic situations. A complete, consistent, unified theory is only the first step: our goal is a complete understanding of the events around us, and of our own existence.
When we combine quantum mechanics with general relativity, there seems to be a new possibility that did not arise before: that space and time together might form a finite, four-dimensional space without singularities or boundaries, like the surface of the earth but with more dimensions. It seems that this idea could explain many of the observed features of the universe, such as its large-scale uniformity and also the smaller-scale departures from homogeneity, like galaxies, stars, and even human beings. It could even account for the arrow of time that we observe.
But if the universe is completely self-contained, with no singularities or boundaries, and completely described by a unified theory, that has profound implications for the role of God as Creator.
if we do discover a complete theory, it should in time be understandable in broad principle by everyone, not just a few scientists. Then we shall all, philosophers, scientists, and just ordinary people, be able to take part in the discussion of the question of why it is that we and the universe exist. If we find the answer to that, it would be the ultimate triumph of human reason—for then we would know the mind of God.

