Ian Pitchford

24%
Flag icon
In this chapter I will tell the story of Bayesian networks from their roots in the eighteenth century to their development in the 1980s, and I will give some more examples of how they are used today. They are related to causal diagrams in a simple way: a causal diagram is a Bayesian network in which every arrow signifies a direct causal relation, or at least the possibility of one, in the direction of that arrow. Not all Bayesian networks are causal, and in many applications it does not matter. However, if you ever want to ask a rung-two or rung-three query about your Bayesian network, you ...more
The Book of Why: The New Science of Cause and Effect (Penguin Science)
Rate this book
Clear rating
Open Preview