More on this book
Community
Kindle Notes & Highlights
by
Kai-Fu Lee
Read between
February 25 - April 5, 2020
Today, successful AI algorithms need three things: big data, computing power, and the work of strong—but not necessarily elite—AI algorithm engineers.
Harnessing the power of AI today—the “electricity” of the twenty-first century—requires four analogous inputs: abundant data, hungry entrepreneurs, AI scientists, and an AI-friendly policy environment. By looking at the relative strengths of China and the United States in these four categories, we can predict the emerging balance of power in the AI world order.
China’s alternate digital universe now creates and captures oceans of new data about the real world. That wealth of information on users—their location every second of the day, how they commute, what foods they like, when and where they buy groceries and beer—will prove invaluable in the era of AI implementation. It gives these companies a detailed treasure trove of these users’ daily habits, one that can be combined with deep-learning algorithms to offer tailor-made services ranging from financial auditing to city planning. It also vastly outstrips what Silicon Valley’s leading companies can
...more
Putting all these pieces together—the dual transitions into the age of implementation and the age of data, China’s world-class entrepreneurs and proactive government—I believe that China will soon match or even overtake the United States in developing and deploying artificial intelligence. In my view, that lead in AI deployment will translate into productivity gains on a scale not seen since the Industrial Revolution. PricewaterhouseCoopers estimates AI deployment will add $15.7 trillion to global GDP by 2030. China is predicted to take home $7 trillion of that total, nearly double North
...more
As deep learning washes over the global economy, it will indeed wipe out billions of jobs up and down the economic ladder: accountants, assembly line workers, warehouse operators, stock analysts, quality control inspectors, truckers, paralegals, and even radiologists, just to name a few. Human civilization has in the past absorbed similar technology-driven shocks to the economy, turning hundreds of millions of farmers into factory workers over the nineteenth and twentieth centuries. But none of these changes ever arrived as quickly as AI. Based on the current trends in technology advancement
...more
Rising in tandem with unemployment will be astronomical wealth in the hands of the new AI tycoons.
Further concentrating those profits is the fact that AI naturally trends toward winner-take-all economics within an industry. Deep learning’s relationship with data fosters a virtuous circle for strengthening the best products and companies: more data leads to better products, which in turn attract more users, who generate more data that further improves the product. That combination of data and cash also attracts the top AI talent to the top companies, widening the gap between industry leaders and laggards.
In the past, the dominance of physical goods and limits of geography helped rein in consumer monopolies. (U.S. antitrust laws didn’t hurt either.) But going forward, digital goods and services will continue eating up larger shares of the consumer pie, and autonomous trucks and drones will dramatically slash the cost of shipping physical goods. Instead of a dispersion of industry profits across different companies and regions, we will begin to see greater and greater concentration of these astronomical sums in the hands of a few, all while unemployment lines grow longer.
The AI world order will combine winner-take-all economics with an unprecedented concentration of wealth in the hands of a few companies in China and the United States. This, I believe, is the real underlying threat posed by artificial intelligence: tremendous social disorder and political collapse stemming from widespread unemployment and gaping inequality.
Silicon Valley may have found the copying undignified and the tactics unsavory. In many cases, it was. But it was precisely this widespread cloning—the onslaught of thousands of mimicking competitors—that forced companies to innovate. Survival in the internet coliseum required relentlessly iterating products, controlling costs, executing flawlessly, generating positive PR, raising money at exaggerated valuations, and seeking ways to build a robust business “moat” to keep the copycats out. Pure copycats never made for great companies, and they couldn’t survive inside this coliseum. But the
...more
Silicon Valley’s and China’s internet ecosystems grew out of very different cultural soil. Entrepreneurs in the valley are often the children of successful professionals, such as computer scientists, dentists, engineers, and academics. Growing up they were constantly told that they—yes, they in particular—could change the world. Their undergraduate years were spent learning the art of coding from the world’s leading researchers but also basking in the philosophical debates of a liberal arts education. When they arrived in Silicon Valley, their commutes to and from work took them through the
...more
This highlight has been truncated due to consecutive passage length restrictions.
In stark contrast, China’s startup culture is the yin to Silicon Valley’s yang: instead of being mission-driven, Chinese companies are first and foremost market-driven. Their ultimate goal is to make money, and they’re willing to create any product, adopt any model, or go into any business that will accomplish that objective. That mentality leads to incredible flexibility in business models and execution, a perfect distillation of the “lean startup” model often praised in Silicon Valley. It doesn’t matter where an idea came from or who came up with it. All that matters is whether you can
...more
This highlight has been truncated due to consecutive passage length restrictions.
Combine these three currents—a cultural acceptance of copying, a scarcity mentality, and the willingness to dive into any promising new industry—and you have the psycholog...
This highlight has been truncated due to consecutive passage length restrictions.
For years, the copycat products that emerged from China’s cultural stew were widely mocked by the Silicon Valley elite. They were derided as cheap knockoffs, embarrassments to their creators and unworthy of the attention of true innovators. But those outsiders missed what was brewing beneath the surface. The most valuable product to come out of China’s copycat era wasn’t a product at all: it was the entrepreneurs themselves.
The engineering know-how and design sensibility needed to create a world-class technology product don’t just appear out of nowhere. In the United States, universities, companies, and engineers have been cultivating and passing down these skillsets for generations. Each generation has its breakout companies or products, but these innovations rest on a foundation of education, mentorship, internships, and inspiration. China had no such luxury. When Bill Gates founded Microsoft in 1975, China was still in the throes of the Cultural Revolution, a time of massive social upheaval and
...more
This highlight has been truncated due to consecutive passage length restrictions.
In my view, that willingness to get one’s hands dirty in the real world separates Chinese technology companies from their Silicon Valley peers. American startups like to stick to what they know: building clean digital platforms that facilitate information exchanges. Those platforms can be used by vendors who do the legwork, but the tech companies tend to stay distant and aloof from these logistical details. They aspire to the mythology satirized in the HBO series Silicon Valley, that of a skeleton crew of hackers building a billion-dollar business without ever leaving their San Francisco loft.
...more
This highlight has been truncated due to consecutive passage length restrictions.
When looking to disrupt a new industry, American internet companies tend to take a “light” approach. They generally believe the internet’s fundamental power is sharing information, closing knowledge gaps, and connecting people digitally. As internet-driven companies, they try to stick to this core strength. Silicon Valley startups will build the information platform but then let brick-and-mortar businesses handle the on-the-ground logistics. They want to win by outsmarting opponents, by coming up with novel and elegant code-based solutions to information problems. In China, companies tend to
...more
That willingness to go heavy—to spend the money, manage the workforce, do the legwork, and build economies of scale—has reshaped the relationship between the digital and real-world economies. China’s internet is penetrating far deeper into the economic lives of ordinary people, and it is affecting both consumption trends and labor markets. In a 2016 study by McKinsey and Company, 65 percent of Chinese O2O users said that the apps led them to spend more money on dining. In the categories of travel and transportation, 77 percent and 42 percent of users, respectively, reported increasing their
...more
Adoption of mobile payments happened at lightning speed. The two companies began experimenting with payment-by-scan in 2014 and deployed at scale in 2015. By the end of 2016, it was hard to find a shop in a major city that did not accept mobile payments. Chinese people were paying for groceries, massages, movie tickets, beer, and bike repairs within just these two apps. By the end of 2017, 65 percent of China’s over 753 million smartphone users had enabled mobile payments. Given the extremely low barriers to entry, those payment systems soon trickled down into China’s vast informal economy.
...more
This highlight has been truncated due to consecutive passage length restrictions.
BLURRED LINES AND BRAVE NEW WORLDS In the span of less than two years, China’s bike-sharing revolution has reshaped the country’s urban landscape and deeply enriched its data-scape. This shift forms a dramatic visual illustration of what China’s alternate internet universe does best: solving practical problems by blurring the lines between the online and offline worlds. It takes the core strength of the internet (information transmission) and leverages it in building businesses that reach out into the real world and directly touch on every corner of our lives. Building this alternate universe
...more
But the greatest riches of this new Chinese tech world have yet to be realized. Like the long-buried organic matter that became fossil fuels powering the Industrial Revolution, the rich real-world interactions in China’s alternate internet universe are creating the massive data that will power its AI revolution. Each dimension of that universe—WeChat activity, O2O services, ride-hailing, mobile payments, and bike-sharing—adds a new layer to a data-scape that is unprecedented in its granular mapping of real-world consumption and transportation habits. China’s O2O explosion gave its companies
...more
This highlight has been truncated due to consecutive passage length restrictions.
THE STUFF OF AN AI SUPERPOWER As I laid out earlier, creating an AI superpower for the twenty-first century requires four main building blocks: abundant data, tenacious entrepreneurs, well-trained AI scientists, and a supportive policy environment. We’ve already seen how China’s gladiatorial startup ecosystem trained a generation of the world’s most street-smart entrepreneurs, and how China’s alternate internet universe created the world’s richest data ecosystem. This chapter assesses the balance of power in the two remaining ingredients—AI expertise and government support. I believe that in
...more
But bringing AI’s power to bear on the broader economy can’t be done by private companies alone—it requires an accommodating policy environment and can be accelerated by direct government support. As you recall, soon after Ke Jie’s loss to AlphaGo, the Chinese central government released a sweeping blueprint for Chinese leadership in AI. Like the “mass innovation and mass entrepreneurship” campaign, China’s AI plan is turbocharging growth through a flood of new funding, including subsidies for AI startups and generous government contracts to accelerate adoption. The plan has also shifted
...more
This highlight has been truncated due to consecutive passage length restrictions.
Mass electrification exemplified this process. Following Thomas Edison’s harnessing of electricity, the field rapidly shifted from invention to implementation. Thousands of engineers began tinkering with electricity, using it to power new devices and reorganize industrial processes. Those tinkerers didn’t have to break new ground like Edison. They just had to know enough about how electricity worked to turn its power into useful and profitable machines. Our present phase of AI implementation fits this latter model. A constant stream of headlines about the latest task tackled by AI gives us the
...more
The “grid” approach is trying to commoditize AI. It aims to turn the power of machine learning into a standardized service that can be purchased by any company—or even be given away for free for academic or personal use—and accessed via cloud computing platforms. In this model, cloud computing platforms act as the grid, performing complex machine-learning optimizations on whatever data problems users require. The companies behind these platforms—Google, Alibaba, and Amazon—act as the utility companies, managing the grid and collecting the fees. Hooking into that grid would allow traditional
...more
AI startups are taking the opposite approach. Instead of waiting for this grid to take shape, startups are building highly specific “battery-powered” AI products for each use-case. These startups are banking on depth rather than breadth. Instead of supplying general-purpose machine-learning capabilities, they build new products and train algorithms for specific tasks, including medical diagnosis, mortgage lending, and autonomous drones. They are betting that traditional businesses won’t be able to simply plug the nitty-gritty details of their daily operations into an all-purpose grid. Instead
...more
Each era of computing requires different kinds of chips. When desktops reigned supreme, chipmakers sought to maximize processing speed and graphics on a high-resolution screen, with far less concern about power consumption. (Desktops were, after all, always plugged in.) Intel mastered the design of these chips and made billions in the process. But with the advent of smartphones, demand shifted toward more efficient uses of power, and Qualcomm, whose chips were based on designs by the British firm ARM, took the throne as the undisputed chip king. Now, as traditional computing programs are
...more
This highlight has been truncated due to consecutive passage length restrictions.
Of course, it’s too early to know the exact results of China’s AI campaign, but if Chinese history is any guide, it is likely to be somewhat inefficient but extremely effective. The sheer scope of financing and speed of deployment almost guarantees that there will be inefficiencies. Government bureaucracies cannot rapidly deploy billions of dollars in investments and subsidies without some amount of waste. There will be dorms for AI employees that will never be inhabited, and investments in startups that will never get off the ground. There will be traditional technology companies that merely
...more
Contrast that with the political firestorm following big bets gone bad in the United States. After the 2008 financial crisis, President Obama’s stimulus program included plans for government loan guarantees on promising renewable energy projects. It was a program designed to stimulate a stagnant economy but also to facilitate a broader economic and environmental shift toward green energy. One of the recipients of those loan guarantees was Solyndra, a California solar panel company that initially looked promising but then went bankrupt in 2011. President Obama’s critics quickly turned that
...more
Self-driving cars make for a good example of this balancing act. In 2016, the United States lost forty thousand people to traffic accidents. That annual death toll is equivalent to the 9/11 terrorist attacks occurring once every month from January through November, and twice in December. The World Health Organization estimates that there are around 260,000 annual road fatalities in China and 1.25 million around the globe. Autonomous vehicles are on the path to eventually being far safer than human-driven vehicles, and widespread deployment of the technology will dramatically decrease these
...more
This highlight has been truncated due to consecutive passage length restrictions.
Smart Finance’s deep-learning algorithms don’t just look to the obvious metrics, like how much money is in your WeChat Wallet. Instead, it derives predictive power from data points that would seem irrelevant to a human loan officer. For instance, it considers the speed at which you typed in your date of birth, how much battery power is left on your phone, and thousands of other parameters. What does an applicant’s phone battery have to do with creditworthiness? This is the kind of question that can’t be answered in terms of simple cause and effect. But that’s not a sign of the limitations of
...more
This highlight has been truncated due to consecutive passage length restrictions.
Right now, medical knowledge—and thus the power to deliver accurate diagnoses—is pretty much kept bottled up within a small number of very talented humans, people with imperfect memories and limited time to keep up with new advances in the field. Sure, a vast wealth of medical information is scattered across the internet but not in a way that is navigable by most people. First-rate medical diagnosis is still heavily rationed based on geography and, quite candidly, one’s ability to pay. This is especially stark in China, where well-trained doctors all cluster in the wealthiest cities. Travel
...more
This highlight has been truncated due to consecutive passage length restrictions.
Instead of replacing doctors with algorithms, RXThinking’s AI diagnosis app empowers them. It acts like a “navigation app” for the diagnosis process, drawing on all available knowledge to recommend the best route but still letting the doctors steer the car. As the algorithm gains more information on each specific case, it progressively narrows the scope of possible illnesses and requests further clarifying information needed to complete the diagnosis. Once enough information has been entered to give the algorithm a high level of certainty, it makes a prediction for the cause of the symptoms,
...more
As perception AI gets better at recognizing our faces, understanding our voices, and seeing the world around us, it will add millions of seamless points of contact between the online and offline worlds. Those nodes will be so pervasive that it no longer makes sense to think of oneself as “going online.” When you order a full meal just by speaking a sentence from your couch, are you online or offline? When your refrigerator at home tells your shopping cart at the store that you’re out of milk, are you moving through a physical world or a digital one? I call these new blended environments OMO:
...more
“WHERE EVERY SHOPPING CART KNOWS YOUR NAME”
Perception AI–powered shopping trips like this will capture one of the fundamental contradictions of the AI age before us: it will feel both completely ordinary and totally revolutionary. Much of our daily activity will still follow our everyday established patterns, but the digitization of the world will eliminate common points of friction and tailor services to each individual. They will bring the convenience and abundance of the online world into our offline reality. Just as important, by understanding and predicting the habits of each shopper, these stores will make major improvements in
...more
AN OMO-POWERED EDUCATION These kinds of immersive OMO scenarios go far beyond shopping. These same techniques—visual identification, speech recognition, creation of a detailed profile based on one’s past behavior—can be used to create a highly tailored experience in education. Present-day education systems are still largely run on the nineteenth-century “factory model” of education: all students are forced to learn at the same speed, in the same way, at the same place, and at the same time. Schools take an “assembly line” approach, passing children from grade to grade each year, largely
...more
This highlight has been truncated due to consecutive passage length restrictions.
Almost all of the tools described here already exist, and many are being implemented in different classrooms across China. Taken together, they constitute a new AI-powered paradigm for education, one that merges the online and offline worlds to create a learning experience tailored to the needs and abilities of each student. China appears poised to leapfrog the United States in education AI, in large part due to voracious demand from Chinese parents. Chinese parents of only children pour money into their education, a result of deeply entrenched Chinese values, intense competition for
...more
PUBLIC SPACES AND PRIVATE DATA
It’s up to each country to make its own decisions on how to balance personal privacy and public data. Europe has taken the strictest approach to data protection by introducing the General Data Protection Regulation, a law that sets a variety of restrictions on the collection and use of data within the European Union. The United States continues to grapple with implementing appropriate protections to user privacy, a tension illustrated by Facebook’s Cambridge Analytica scandal and subsequent congressional hearings. China began implementing its own Cybersecurity Law in 2017, which included new
...more
This highlight has been truncated due to consecutive passage length restrictions.
MADE IN SHENZHEN
Today, the greatest advantage of manufacturing in China isn’t the cheap labor—countries like Indonesia and Vietnam offer lower wages. Instead, it’s the unparalleled flexibility of the supply chains and the armies of skilled industrial engineers who can make prototypes of new devices and build them at scale. These are the secret ingredients powering Shenzhen, whose talented workers have transformed it from a dirt-cheap factory town to a go-to city for entrepreneurs who want to build new drones, robots, wearables, or intelligent machines. In Shenzhen, those entrepreneurs have direct access to
...more
This highlight has been truncated due to consecutive passage length restrictions.
MI FIRST
As perception AI finds its way into more pieces of hardware, the entire home will feed into and operate off digitized real-world data. Your AI fridge will order more milk when it sees that you’re running low. Your cappuccino machine will kick into gear at your voice command. The AI-equipped floors of your elderly parents will alert you immediately if they’ve tripped and fallen. Third-wave AI products like these are on the verge of transforming our everyday environment, blurring lines between the digital and physical world until they disappear entirely. During this transformation, Chinese
...more
THE AUTONOMOUS BALANCE OF POWER While all of this may sound exciting and innovative to the Chinese landscape, the hard truth is that no amount of government support can guarantee that China will lead in autonomous AI. When it comes to the core technology needed for self-driving cars, American companies remain two to three years ahead of China. In technology timelines, that’s light-years of distance. Part of that stems from the relative importance of elite expertise in fourth-wave AI: safety issues and sheer complexity make autonomous vehicles a much tougher engineering nut to crack. It’s a
...more
This highlight has been truncated due to consecutive passage length restrictions.
FOLDING BEIJING: SCIENCE-FICTION VISIONS AND AI ECONOMICS When the clock strikes 6 a.m., the city devours itself. Densely packed buildings of concrete and steel bend at the hip and twist at their spines. External balconies and awnings are turned inward, creating smooth and tightly sealed exteriors. Skyscrapers break down into component parts, shuffling and consolidating into Rubik’s Cubes of industrial proportions. Inside those blocks are the residents of Beijing’s Third Space, the economic underclass that toils during the night hours and sleeps during the day. As the cityscape folds in on
...more
This highlight has been truncated due to consecutive passage length restrictions.
AI: PUTTING THE G IN GPT What does all this have to do with AI? I am confident that AI will soon enter the elite club of universally recognized GPTs, spurring a revolution in economic production and even social organization. The AI revolution will be on the scale of the Industrial Revolution, but probably larger and definitely faster. Consulting firm PwC predicts that AI will add $15.7 trillion to the global economy by 2030. If that prediction holds up, it will be an amount larger than the entire GDP of China today and equal to approximately 80 percent of the GDP of the United States in 2017.
...more
This highlight has been truncated due to consecutive passage length restrictions.
With artificial intelligence, China’s progress allows for the research talent and creative capacity of nearly one-fifth of humanity to contribute to the task of distributing and utilizing artificial intelligence. Combine this with the country’s gladiatorial entrepreneurs, unique internet ecosystem, and proactive government push, and China’s entrance to the field of AI constitutes a major accelerant to AI that was absent for previous GPTs. Reviewing the preceding arguments, I believe we can confidently state a few things. First, during the industrial era, new technology has been associated with
...more
WHAT AI CAN AND CAN’T DO: THE RISK-OF-REPLACEMENT GRAPHS When it comes to job replacement, AI’s biases don’t fit the traditional one-dimensional metric of low-skill versus high-skill labor. Instead, AI creates a mixed bag of winners and losers depending on the particular content of job tasks performed. While AI has far surpassed humans at narrow tasks that can be optimized based on data, it remains stubbornly unable to interact naturally with people or imitate the dexterity of our fingers and limbs. It also cannot engage in cross-domain thinking on creative tasks or ones requiring complex
...more
This highlight has been truncated due to consecutive passage length restrictions.