More on this book
Community
Kindle Notes & Highlights
by
Kai-Fu Lee
Started reading
September 27, 2018
Shared-bike use exploded. In the span of a year, the bikes went from urban oddities to total ubiquity,
China has built a roster of technology giants worth over a trillion dollars—a feat accomplished by no other country outside the United States.
WeChat activity, O2O services, ride-hailing, mobile payments, and bike-sharing—adds a new layer to a data-scape that is unprecedented in its granular mapping of real-world consumption and transportation habits.
China’s O2O explosion gave its companies tremendous data on the offline lives of their users: the what, where, and when of their meals, massages, and day-to-day activities. Digital payments cracked open the black box of real-world consumer purchases, giving these companies a precise, real-time data map of consumer behavior.
They trace tens of millions of commutes, trips to the store, rides home, and first dates, dwarfing companies like Uber and Lyft in both quantity and granularity of data.
Chinese companies outstripping U.S. competitors ten to one in quantity of food deliveries and fifty to one in spending on mobile payments. China’s e-commerce purchases are roughly double the U.S. totals, and the gap is only growing. Data on total trips through ride-hailing apps is somewhat scarce, but during the height of competition between Uber and Didi, self-reported numbers from the two companies had Didi’s rides in China at four times the total of Uber’s global rides. When it comes to rides on shared bikes, China is outpacing the United States at an astounding ratio of three hundred to
...more
building an AI-driven economy requires more than just gladiator entrepreneurs and abundant data. It also takes an army of trained AI engineers and a government eager to embrace the power of this transformative technology. These two factors—AI expertise and government support—are the final pieces of the AI puzzle.
As artificial intelligence filters into the broader economy, this era will reward the quantity of solid AI engineers over the quality of elite researchers. Real economic strength in the age of AI implementation won’t come just from a handful of elite scientists who push the boundaries of research. It will come from an army of well-trained engineers who team up with entrepreneurs to turn those discoveries into game-changing companies.
They’re using billions of dollars in cash and dizzying stockpiles of data to gobble up available AI talent. They’re also working to construct the “power grids” for the AI age: privately controlled computing networks that distribute machine learning across the economy, with the corporate giants acting as “utilities.”
mayors across China are scrambling to turn their cities into showcases for new AI applications. They’re plotting driverless trucking routes, installing facial recognition systems on public transportation, and hooking traffic grids into “city brains” that optimize flows.
Deep-learning pioneers like Geoffrey Hinton, Yann LeCun, and Yoshua Bengio—the Enrico Fermis of AI—continue to push the boundaries of artificial intelligence. And they may yet produce another game-changing breakthrough, one that scrambles the global technological pecking order. But in the meantime, the real action today is with the tinkerers.
In the post-AlphaGo world, Chinese students, researchers, and engineers are among the most voracious readers of www.arxiv.org. They trawl the site for new techniques, soaking up everything the world’s top researchers have to offer. Alongside these academic publications, Chinese AI students also stream, translate, and subtitle lectures from leading AI scientists like Yann LeCun, Stanford’s Sebastian Thrun, and Andrew Ng. After decades spent studying outdated textbooks in the dark, these researchers revel in this instant connectivity to global research trends.
Association for the Advancement of Artificial Intelligence had a problem. The storied organization had been putting on one of the world’s most important AI conferences for three decades, but in 2017 they were in danger of hosting a dud event. Why? The conference dates conflicted with Chinese New Year.
Artificial intelligence doesn’t touch on sensitive political questions, and China’s AI scientists are essentially as free as their American counterparts to construct cutting-edge algorithms or build profitable AI applications.
At a 2017 conference on artificial intelligence and global security, former Google CEO Eric Schmidt warned participants against complacency when it came to Chinese AI capabilities. Predicting that China would match American AI capabilities in five years,
Alibaba and Tencent were relative latecomers to the AI talent race, but they have the cash and data on hand to attract top talent. With WeChat serving as the all-in-one super-app of the world’s largest internet market, Tencent possesses perhaps the single richest data ecosystem of all the giants. That is now helping Tencent to attract and empower top-flight AI researchers. In 2017, Tencent opened an AI research institute in Seattle and immediately began poaching Microsoft researchers to staff it.
Alibaba has followed suit with plans to open a global network of research labs, including in Silicon Valley and Seattle. Thus far, Tencent and Alibaba have yet to publicly demonstrate the results of this research, opting instead for more product-driven applications. Alibaba has taken the lead on “City Brains”: massive AI-driven networks that optimize city services by drawing on data from video cameras, social media, public transit, and location-based apps. Working
Each era of computing requires different kinds of chips. When desktops reigned supreme, chipmakers sought to maximize processing speed and graphics on a high-resolution screen, with far less concern about power consumption. (Desktops were, after all, always plugged in.) Intel mastered the design of these chips and made billions in the process. But with the advent of smartphones, demand shifted toward more efficient uses of power, and Qualcomm, whose chips were based on designs by the British firm ARM, took the throne as the undisputed chip king. Now, as traditional computing programs are
...more
These chips are central to everything from facial recognition to self-driving cars, and that has set off a race to build the next-generation AI chip. Google and Microsoft—companies that had long avoided building their own chips—have jumped into the fray, alongside Intel, Qualcomm, and a batch of well-funded Silicon Valley chip startups. Facebook has partnered with Intel to test-drive its first foray into AI-specific chips.
The Chinese Ministry of Science and Technology is doling out large sums of money, naming as a specific goal the construction of a chip with performance and energy efficiency twenty times better than one of Nvidia’s current offerings.
Chinese chip startups like Horizon Robotics, Bitmain, and Cambricon Technologies are flush with investment capital and working on products tailor-made for self-driving cars or other AI use-cases. The country’s edge in data will also feed into chip development, offering hardware makers a feast of examples on which to test their products.
July 2017, the Chinese State Council’s “Development Plan for a New Generation of Artificial Intelligence” shared many of the same predictions and recommendations as the White House plan. It also spelled out hundreds of industry-specific applications of AI and laid down signposts for China’s progress toward becoming an AI superpower. It called for China to reach the top tier of AI economies by 2020, achieve major new breakthroughs by 2025, and become the global leader in AI by 2030.
If AlphaGo was China’s Sputnik Moment, the government’s AI plan was like President John F. Kennedy’s landmark speech calling for America to land a man on the moon.
turning their cities into hubs for AI development. They offered subsidies for research, directed venture-capital “guiding funds” toward AI, purchased the products and services of local AI startups, and set up dozens of special development zones and incubators.
Between 2017 and 2020, the Nanjing Economic and Technological Development Zone plans to put at least 3 billion RMB (around $450 million) into AI development. That money will go toward a dizzying array of AI subsidies and perks, including investments of up to 15 million RMB in local companies, grants of 1 million RMB per company to attract talent, rebates on research expenses of up to 5 million RMB, creation of an AI training institute, government contracts for facial recognition and autonomous robot technology, simplified procedures for registering a company, seed funding and office space for
...more
And that is all in just one city. Nanjing’s population of 7 million ranks just tenth in China, a country with a hundred cities of more than a million people.
development. For the past thirty years, Chinese leaders have practiced a kind of techno-utilitarianism, leveraging technological upgrades to maximize broader social good while accepting that there will be downsides for certain individuals or industries. It,
In 2016, the United States lost forty thousand people to traffic accidents. That annual death toll is equivalent to the 9/11 terrorist attacks occurring once every month from January through November, and twice in December. The World Health Organization estimates that there are around 260,000 annual road fatalities in China and 1.25 million around the globe.
autonomous vehicle to make agonizing ethical decisions, like whether to veer right and have a 55 percent chance of killing two people or veer left and have a 100 percent chance of killing one person.
officials to stand out on AI. Along with competing to attract AI companies through subsidies, these mayors and provincial governors will compete to be the first to implement high-profile AI projects, such as AI-assisted doctors at public hospitals or autonomous trucking routes and “city brains” that optimize urban traffic grids.
iFlyTek has far surpassed Nuance in capabilities and market cap, becoming the most valuable AI speech company in the world.
Combining iFlyTek’s cutting-edge capabilities in speech recognition, translation, and synthesis will yield transformative AI products, including simultaneous translation earpieces that instantly convert your words and voice into any language. It’s the kind of product that will soon revolutionize international travel, business, and culture, and unlock vast new stores of time, productivity, and creativity in the process.
The complete AI revolution will take a little time and will ultimately wash over us in a series of four waves: internet AI, business AI, perception AI, and autonomous AI.
These four waves all feed off different kinds of data, and each one presents a unique opportunity for the United States or China to seize the lead.
Internet AI is largely about using AI algorithms as recommendation engines: systems that learn our personal preferences and then serve up content hand-picked for us. The horsepower of these AI engines depends on the digital data they have access to, and there’s currently no greater storehouse of this data than the major internet companies.
Average people experience this as the internet “getting better”—that is, at giving us what we want—and becoming more addictive as it goes. But it’s also proof of the power of AI to learn about us through data and then optimize for what we desire. That optimization has been translated into massive increases in profits for established internet companies that make money off our clicks: the Googles, Baidus, Alibabas, and YouTubes of the world. Using internet AI, Alibaba can recommend products you’re more likely to buy, Google can target you with ads you’re more likely to click on, and YouTube can
...more
“There’s no data like more data.”
AI-driven internet companies. China’s leader in this category is Jinri Toutiao (meaning “today’s headlines”; English name: “ByteDance”).
Toutiao’s “editors” are algorithms. Toutiao’s AI engines trawl the internet for content, using natural-language processing and computer vision to digest articles and videos from a vast network of partner sites and commissioned contributors. It then uses the past behavior of its users—their clicks, reads, views, comments, and so on—to curate a highly personalized newsfeed tailored to each person’s interests. The app’s algorithms even rewrite headlines to optimize for user clicks. And the more those users click, the better Toutiao becomes at recommending precisely the content they want to see.
users spending an average of seventy-four minutes per day in the app.
Algorithms are also being used to sniff out “fake news” on the platform, often in the form of bogus medical treatments. Originally, readers discovered and reported misleading stories—essentially, free labeling of that data. Toutiao then used that labeled data to train an algorithm that could identify fake news in the wild. Toutiao even trained a separate algorithm to write fake news stories. It then pitted those two algorithms against each other, competing to fool one another and improving both in the process.
By late 2017, Toutiao was already valued at $20 billion and went on to raise a new round of funding that would value it at $30 billion, dwarfing the $1.7 billion valuation for BuzzFeed
Tencent’s market cap—surpassing Facebook in November 2017 and becoming the first Chinese company to top $500 billion—and
Chinese and American companies are on about equal footing in internet AI, with around 50–50 odds of leadership based on current technology. I predict that in five years’ time, Chinese technology companies will have a slight advantage (60–40) when it comes to leading the world in internet AI and reaping the richest rewards from its implementation.
China alone has more internet users than the United States and all of Europe combined, and those users are empowered to make frictionless mobile payments to content creators, O2O platforms, and other users. That combination is generating creative internet AI applications and opportunities for monetization unmatched anywhere else in the world.
in predicting the likelihood of someone contracting diabetes, a person’s weight and body mass index are strong features. AI algorithms do indeed factor in these strong features, but they also look at thousands of other weak features: peripheral data points that might appear unrelated to the outcome but contain some predictive power when combined across tens of millions of examples. These subtle correlations are often impossible for any human to explain in terms of cause and effect: why do borrowers who take out loans on a Wednesday repay those loans faster? But algorithms that can combine
...more
AI-powered micro-finance.
Smart Finance, an AI-powered app that relies exclusively on algorithms to make millions of small loans. Instead of asking borrowers to enter how much money they make, it simply requests access to some of the data on a potential borrower’s phone. That data forms a kind of digital fingerprint, one with an astonishing ability to predict whether the borrower will pay back a loan of three hundred dollars. Smart Finance’s deep-learning algorithms don’t just look to the obvious metrics, like how much money is in your WeChat Wallet. Instead, it derives predictive power from data points that would seem
...more
Smart Finance has discovered thousands of weak features that are correlated to creditworthiness,
China, where well-trained doctors all cluster in the wealthiest cities. Travel outside of Beijing and Shanghai, and you’re likely to see a dramatic drop in the medical knowledge of doctors treating your illness. The result? Patients from all around the country try to cram into the major hospitals, lining up for days and straining limited resources to the breaking point.